Einflüsse von unterschiedlichen atmosphärischen Bedingungen auf die Induction Zone von Windturbinen

2021 ◽  
Author(s):  
Carolin Schmitt

<p>Beim Betrieb einer Windkraftanlage wird die Windgeschwindigkeit bereits vor dem Rotor durch den Vorstaueffekt im Vergleich zur freien Strömung abgebremst.  Dieser Bereich wird als sogenannte „Induction Zone “ (IZ) bezeichnet.  Besondere Bedeutung bekommt dieser Effekt bei großen Offshore Windparks, wenn sich die IZ mehrerer Turbinen überlagern und es zur Ausbildung des „Global Blockage Effect“ (GBE) kommt und die Strömung noch stärker abgebremst wird als für Einzelanlagen.</p> <p>Ausprägung und Stärke der IZ hängen von atmosphärischen Bedingungen wie auch technischen Parametern der Windturbinen ab.  Am besten kann die IZ mittels Fernerkundungsmethoden wie Lidar vermessen werden, da es so möglich ist, die Einströmbedingungen in verschiedenen Distanzen vor dem Rotor bis in den Bereich der freien Anströmung hin zu erfassen. Dies ist insbesondere wichtig, da bei der Beurteilung der Performance von Windkraftanlagen, der sogenannten Leistungskurvenvermessung, das Verhältnis zwischen freier Windgeschwindigkeit und produzierter Leistung bewertet wird. Hierfür wird standardmäßig die Windgeschwindigkeit in 2.5 Rotordurchmessern vor der Anlage als freie Geschwindigkeit angesetzt.</p> <p>Für die hier gezeigten Auswertung werden verschiedene Messungen in der IZ On- und Offshore betrachtet. Neben Sensitivitätsstudien zur Leistungskurvenvermessung wird auch untersucht, wie sich die Strömungseffekte um eine Anlage herum entwickeln, wie die relevanten Parameter zur Strömungsmodellierung angepasst werden können und wie der Nachlauf von benachbarten Turbinen die Ausprägung der IZ beeinflussen kann. Darüber hinaus wird auch der Einfluss der Oberflächenrauigkeiten im Vergleich der Onshore und Offshore Standorte betrachtet. Ein weiterer Punkt ist der Vergleich mit den standardmäßig auf den Gondeln installierten Anemometern, die über eine sogenannte „Nacelle Transfer Function“ (NTF) auf eine reale, freie Windgeschwindigkeit skaliert sein sollten.</p> <p>Bei der Onshore Kampagne ermöglicht ein großer, freier Anströmsektor die ungestörte IZ und damit die Einflüsse von atmosphärischer Stabilität, Turbulenz und Turbinenzustand auf den Geschwindigkeitsgradienten zu untersuchen. Weiterhin gibt es Perioden mit klar definierten Windrichtungen, in denen der Nachlauf von einer oder mehreren Turbinen und somit der Einfluss auf das horizontale Profil  isoliert werden kann.</p> <p>Bei der Offshore Kampagne findet die Messungen bereits innerhalb der GBE Zone statt.  Es werden neben den Messungen mit Gondellidaren auch Lidar-Scanner im Dual Doppler Verfahren eingesetzt, um Gradienten aus größeren Entfernungen und die Bereiche der freien Anströmung zu erfassen. Hierfür ist auch interessant, wie sich die Korrelationen mit dem Geschwindigkeitsfeld direkt vor dem Rotor für die unterschiedlichen Stabilitäts- und Anströmbedingungen ändern.</p> <p>Die vorgestellten Messungen zeigen für alle Standorte, dass sich die IZ weit über 2.5 Rotordurchmesser stromaufwärts erstreckt. Eine Abschätzung der Leistungskurve kann somit auf zu geringen Windgeschwindigkeiten basieren und zu energiereicheren Kurven führen, als tatsächlich vorliegen. Verschiedene Sensitivitätstests zeigen die Stärke dieses Effekts. Die Kombination aus Daten von Gondel- und Long-Range-Lidargeräten wird hier erstmalig zur Modellverifikation und zur Modellierung des GBE angewendet.</p>

2021 ◽  
Vol 6 (2) ◽  
pp. 521-538
Author(s):  
Jörge Schneemann ◽  
Frauke Theuer ◽  
Andreas Rott ◽  
Martin Dörenkämper ◽  
Martin Kühn

Abstract. The objective of this paper was the experimental investigation of the accumulated induction effect of a large offshore wind farm as a whole, i.e. the global-blockage effect, in relation to atmospheric-stability estimates and wind farm operational states. We measured the inflow of a 400 MW offshore wind farm in the German North Sea with a scanning long-range Doppler wind lidar. A methodology to reduce the statistical variability of different lidar scans at comparable measurement conditions was introduced, and an extensive uncertainty assessment of the averaged wind fields was performed to be able to identify the global-blockage effect, which is small compared to e.g. wind turbine wake effects and ambient variations in the inflow. Our results showed a 4 % decrease in wind speed (accuracy range of 2 % to 6 %) at transition piece height (24.6 m) upwind of the wind farm with the turbines operating at high thrust coefficients above 0.8 in a stably stratified atmosphere, which we interpreted as global blockage. In contrast, at unstable stratification and similar operating conditions and for situations with low thrust coefficients (i.e. approx. 0 for not operating turbines and ≤ 0.3 for turbines operating far above rated wind speed) we identified no wind speed deficit. We discussed the significance of our measurements and possible sources of error in long-range scanning lidar campaigns and give recommendations on how to measure small flow effects like global blockage with scanning Doppler lidar. In conclusion, we provide strong evidence for the existence of global blockage in large offshore wind farms in stable stratification and the turbines operating at a high thrust coefficient by planar lidar wind field measurements. We further conclude that global blockage is dependent on atmospheric stratification.


2020 ◽  
Author(s):  
Jörge Schneemann ◽  
Frauke Theuer ◽  
Andreas Rott ◽  
Martin Dörenkämper ◽  
Martin Kühn

Abstract. The objective of this paper was the experimental investigation of the accumulated induction effect of a large offshore wind farm as a whole, i.e. the global blockage effect, in relation to atmospheric stability estimates and wind farm operational states. We measured the inflow of a 400 MW offshore wind farm in the German North Sea with a scanning long-range Doppler wind lidar. A methodology to reduce the statistical variability of different lidar scans at comparable measurement conditions was introduced and an extensive uncertainty assessment of the averaged wind fields was performed to be able to identify the global blockage effect which is small compared to e.g. wind turbine wake effects and ambient variations in the inflow. Our results showed a significant decrease in wind speed at platform height in front of the wind farm of 4.5 % within an accuracy range between 2.5 % and 6.5 % with the turbines operating at high thrust coefficients in a stably stratified atmosphere, which we interpreted as global blockage. In contrast, at unstable stratification and similar operating conditions we identified no wind speed deficit. We discussed the significance of our measurements, possible sources of error in long-range scanning lidar campaigns and give recommendations how to measure small flow effects like global blockage with scanning Doppler lidar. In conclusion, we provide strong evidence for the existence of global blockage in large offshore wind farms in stable stratification and the turbines operating at a high thrust coefficient by planar lidar wind field measurements. We conclude that global blockage is dependant on atmospheric stratification.


Author(s):  
H.A. Cohen ◽  
W. Chiu

The goal of imaging the finest detail possible in biological specimens leads to contradictory requirements for the choice of an electron dose. The dose should be as low as possible to minimize object damage, yet as high as possible to optimize image statistics. For specimens that are protected by low temperatures or for which the low resolution associated with negative stain is acceptable, the first condition may be partially relaxed, allowing the use of (for example) 6 to 10 e/Å2. However, this medium dose is marginal for obtaining the contrast transfer function (CTF) of the microscope, which is necessary to allow phase corrections to the image. We have explored two parameters that affect the CTF under medium dose conditions.Figure 1 displays the CTF for carbon (C, row 1) and triafol plus carbon (T+C, row 2). For any column, the images to which the CTF correspond were from a carbon covered hole (C) and the adjacent triafol plus carbon support film (T+C), both recorded on the same micrograph; therefore the imaging parameters of defocus, illumination angle, and electron statistics were identical.


Author(s):  
N. Bonnet ◽  
M. Troyon ◽  
P. Gallion

Two main problems in high resolution electron microscopy are first, the existence of gaps in the transfer function, and then the difficulty to find complex amplitude of the diffracted wawe from registered intensity. The solution of this second problem is in most cases only intended by the realization of several micrographs in different conditions (defocusing distance, illuminating angle, complementary objective apertures…) which can lead to severe problems of contamination or radiation damage for certain specimens.Fraunhofer holography can in principle solve both problems stated above (1,2). The microscope objective is strongly defocused (far-field region) so that the two diffracted beams do not interfere. The ideal transfer function after reconstruction is then unity and the twin image do not overlap on the reconstructed one.We show some applications of the method and results of preliminary tests.Possible application to the study of cavitiesSmall voids (or gas-filled bubbles) created by irradiation in crystalline materials can be observed near the Scherzer focus, but it is then difficult to extract other informations than the approximated size.


Author(s):  
D. Van Dyck

An (electron) microscope can be considered as a communication channel that transfers structural information between an object and an observer. In electron microscopy this information is carried by electrons. According to the theory of Shannon the maximal information rate (or capacity) of a communication channel is given by C = B log2 (1 + S/N) bits/sec., where B is the band width, and S and N the average signal power, respectively noise power at the output. We will now apply to study the information transfer in an electron microscope. For simplicity we will assume the object and the image to be onedimensional (the results can straightforwardly be generalized). An imaging device can be characterized by its transfer function, which describes the magnitude with which a spatial frequency g is transferred through the device, n is the noise. Usually, the resolution of the instrument ᑭ is defined from the cut-off 1/ᑭ beyond which no spadal information is transferred.


Author(s):  
Peter Rez

In high resolution microscopy the image amplitude is given by the convolution of the specimen exit surface wave function and the microscope objective lens transfer function. This is usually done by multiplying the wave function and the transfer function in reciprocal space and integrating over the effective aperture. For very thin specimens the scattering can be represented by a weak phase object and the amplitude observed in the image plane is1where fe (Θ) is the electron scattering factor, r is a postition variable, Θ a scattering angle and x(Θ) the lens transfer function. x(Θ) is given by2where Cs is the objective lens spherical aberration coefficient, the wavelength, and f the defocus.We shall consider one dimensional scattering that might arise from a cross sectional specimen containing disordered planes of a heavy element stacked in a regular sequence among planes of lighter elements. In a direction parallel to the disordered planes there will be a continuous distribution of scattering angle.


Sign in / Sign up

Export Citation Format

Share Document