scholarly journals Experimental and numerical effects of flow hydraulics and pipe geometry on leakage behavior of laboratory water network distribution systems

2020 ◽  
Author(s):  
Tamer Nabil ◽  
Fahad Alhaddad ◽  
Mohamed Dawood ◽  
Osama Sharaf

Abstract. As the leakage behavior of water distribution network is considered life-threatening and critical issue, so the behavior of water distribution network system is investigated experimentally and numerically under the effect of different positions and flow rates of leakage outlets taking into consideretion the flowhydraulics and pipe geametry. A laboratory model of the real studied water distribution network is constructed. The laboratory water distribution network is horizontal and has 16 loops with total length 30 m and different diameters. The leakage position in the laboratory water distribution network is altered between main, sub-main and branch pipelines with different flow rates. The characteristics of the ideal laboratory water distribution network with no-leakage are studied first. The studied laboratory water distribution network system parameters are solved theoretically using Hardy-Cross method with seven iterations. The studied water distribution network system was simulated using computational fluid dynamics technique Ansys Fluent 18.2. The aim is to modify the ancient water distribution network by sensing the pressure values using dispersed pressure sensors. Also, from the pressure map of the laboratory water distribution network, the leakage position if exist can be localized. Depending on the sensed pressure, the control circuit programmed to close the corresponding solenoid valves. The leakage flow rates are 0.1, 0.25 and 0.4 L/s and changed between the main and sub-main pipes. The maximum pressure drop around 500 pa at the node directly preceding the leakage point at leakage flow rate 0.4 L/s. The performance of the used solenoid valve is simulated using Matlab-Simulink technique. The simulation results show the response to step down control signal is over damped with steady state error 2 % and settling time 0.6 s.

2011 ◽  
Vol 11 (4-5) ◽  
pp. 731-747 ◽  
Author(s):  
MASSIMILIANO CATTAFI ◽  
MARCO GAVANELLI ◽  
MADDALENA NONATO ◽  
STEFANO ALVISI ◽  
MARCO FRANCHINI

AbstractThis paper presents a new application of logic programming to a real-life problem in hydraulic engineering. The work is developed as a collaboration of computer scientists and hydraulic engineers, and applies Constraint Logic Programming to solve a hard combinatorial problem. This application deals with one aspect of the design of a water distribution network, i.e., the valve isolation system design. We take the formulation of the problem by Giustolisi and Savić (2008 Optimal design of isolation valve system for water distribution networks. InProceedings of the 10th Annual Water Distribution Systems Analysis Conference WDSA2008, J. Van Zyl, A. Ilemobade, and H. Jacobs, Eds.) and show how, thanks to constraint propagation, we can get better solutions than the best solution known in the literature for the Apulian distribution network. We believe that the area of the so-calledhydroinformaticscan benefit from the techniques developed in Constraint Logic Programming and possibly from other areas of logic programming, such as Answer Set Programming.


2019 ◽  
Vol 3 (2) ◽  
pp. 172
Author(s):  
Ayu Rahmad Jayanti ◽  
Ririn Endah Badriani ◽  
Yeny Dhokhikah

The clean water distribution in the Genteng Subdistrict, Banyuwangi Regency is included in the service area of the Zone 1 PDAM tile unit. The 60 liters/second reservoir discharge capacity is obtained from Sumber Umbul Sari in the Glenmore District. The distribution of clean water in Zone 1 is still less than 70% of the area served, as the installed discharge capacity is estimated to be insufficient. In order to achieve the distribution goal, a network system must be developed by adding direct debits and planning a new pipeline. The Epanet 2.0 program simplifies the calculation of pipeline networks by integrating elevation data, network maps, pipeline specification, and load. The analysis of the simulation results was conducted using the Public Works Minister's hydraulic parameter standards 2007. Planning of a distribution network and a cost budget in 2029 were done to estimate the water supply needs and budgets required. The hydraulic simulation results based on the analysis of the pressure of all joints are in accordance with the standard, while the analysis of the velocity in pipe is less standard. The need for water discharge in 2029 is 71.6 liters/second. In Kembiritan Village, the construction of distribution pipes with an additional reservoir unit was planned. The planned pipe dimensions in the development area were 25 mm at 796 meters, 50 mm at 4062 meters, and 75 mm at 1518 meters. The cost of planning a clean water distribution system in 2029 is Rp. 1,431,375,000.00. Distribusi air bersih di Kecamatan Genteng Kabupaten Banyuwangi merupakan wilayah pelayanan Zona 1 PDAM unit Genteng. Kapasitas debit reservoir sebesar 60 liter/detik berasal dari sumber umbul sari di Kecamatan Glenmore. Pendistribusian air bersih di wilayah Zona 1 masih kurang dari 70% wilayah yang terlayani, karena diperkirakan kapasitas debit yang terpasang kurang mencukupi. Untuk memenuhi target pemerataan distribusi perlu pengembangan sistem jaringan dengan penambahan debit dan perencanaan jaringan pipa baru. Program Epanet 2.0 memudahkan dalam perhitungan jaringan perpipaan dengan mengintegrasi data elevasi, peta jaringan, spesifikasi pipa dan debit. Analisis hasil simulasi menggunakan standar parameter hidrolis Permen PU 2007. Perencanaan pengembangan jaringan distribusi dan anggaran biaya pada tahun 2029 guna memperkirakan debit kebutuhan air dan anggaran biaya yang dibutuhkan. Hasil simulasi hidrolis berdasarkan analisis tekanan semua junction telah sesuai standar, sedangkan analisis kecepatan masih di bawah standar. Kebutuhan debit air tahun 2029 sebesar 71,6 Liter/detik. Pengembangan pipa distribusi direncanakan di Desa Kembiritan dengan tambahan satu unit reservoir. Dimensi pipa rencana di wilayah pengembangan digunakan diameter 25 mm sepanjang 796 m, diameter 50 mm sepanjang 4062 m dan diameter 75 mm sepanjang 1518 m. Biaya perencanaan sistem distribusi air bersih tahun 2029 sebesar Rp. 1.431.375.000,00.


2014 ◽  
Vol 14 (5) ◽  
pp. 795-803 ◽  
Author(s):  
R. Sarrate ◽  
J. Blesa ◽  
F. Nejjari ◽  
J. Quevedo

The performance of a leak detection and location algorithm depends on the set of measurements that are available in the network. This work presents an optimization strategy that maximizes the leak diagnosability performance of the network. The goal is to characterize and determine a sensor configuration that guarantees a maximum degree of diagnosability while the sensor configuration cost satisfies a budgetary constraint. To efficiently handle the complexity of the distribution network an efficient branch and bound search strategy based on a structural model is used. However, in order to reduce even more the size and the complexity of the problem the present work proposes to combine this methodology with clustering techniques. The strategy developed in this work is successfully applied to determine the optimal set of pressure sensors that should be installed in a District Metered Area in the Barcelona water distribution network.


2013 ◽  
Vol 15 (3) ◽  
pp. 652-665 ◽  
Author(s):  
Daniel Paluszczyszyn ◽  
Piotr Skworcow ◽  
Bogumil Ulanicki

This paper presents an implementation of an extended simplification algorithm of water distribution network models for the purpose of inclusion in the online optimisation strategy for energy and leakage management in water distribution systems. Whereas the previously proposed reduced model represented accurately the original hydraulic water network characteristics, the energy distribution in the simplified model was not preserved. This could cause a situation where the pump speed required to satisfy specified minimum pressure constraints is different for the reduced model and the original model. This problem has been identified, and an appropriate modification to the simplification algorithm has been introduced. The idea comprises introduction of the energy audit of the water network and the calculation of new minimum service pressure constraints for the simplified model. The approach allows the preservation of both hydraulic and energetic characteristics of the original water network and therefore meets the requirements of the online optimisation strategy. Suitability of the proposed approach is evaluated via a case study. The modern parallel programming implementation allowed water network models consisting of several thousand elements to be reduced within 2 min with an average relative accuracy of less than 2% in terms of tanks flows.


2018 ◽  
Vol 29 (6) ◽  
pp. 991-1019 ◽  
Author(s):  
SADIQAH AL MARZOOQ ◽  
ALVARO ORTIZ-LUGO ◽  
BENJAMIN L. VAUGHAN

In industrialized nations, potable water is often provided through sophisticated water distribution systems. If pathogenic bacteria are introduced into the water distribution network, the presence of a biofilm can lead to biofilm-assisted retention of the pathogens, affecting the potability of the water. To study the dynamics of planktonic and biofilm-bound pathogens within the large network of pipes in a water distribution system, we develop a network model governing the concentration of introduced pathogens within the bulk fluid and the biofilms lining the pipes. Under time-constant flow regimes within the network, we prove that the long-time behaviour of the entire network is dependent on the Lyapunov exponents for each connection in the network when viewed in isolation and the network connectivity. An efficient algorithm is developed for predicting the long-time behaviour of the pathogen population within large networks using the network's topological ordering. The algorithm's predictions are validated using numerical simulations of the full non-linear system on a range of water distribution network sizes.


2005 ◽  
Vol 33 ◽  
pp. 335-341
Author(s):  
Akira KOIZUMI ◽  
Toyono INAKAZU ◽  
Yasuhiro ARAI ◽  
Kyoichiro YOSHII

2015 ◽  
Vol 18 (1) ◽  
pp. 4-22 ◽  
Author(s):  
Chiara M. Fontanazza ◽  
Vincenza Notaro ◽  
Valeria Puleo ◽  
Gabriele Freni

Water demand is the driving force behind hydraulic dynamics in water distribution systems. Consequently, it is crucial to accurately estimate the actual water use to develop reliable simulation models. In this study, copula-based multivariate analysis was proposed and used for demand prediction for a given return period. The analysis was applied to water consumption data collected in the water distribution network of Palermo (Italy). The approach produced consistent demand patterns and could be a powerful tool when coupled with water distribution network models for design or analysis problems. The results were compared with those obtained using a classical water demand model, the Poisson rectangular pulse (PRP) model. The multivariate consumption data statistical analysis results were always higher than those of the PRP model but the copula-based method maintained the daily water volume of actual consumptions and provided maximum daily consumption that increased with the return period.


Water ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1464 ◽  
Author(s):  
Ilker Telci ◽  
Mustafa Aral

Micro hydropower generators (micro turbines), are used to recover excess energy from hydraulic systems and these applications have important potential in renewable energy production. One of the most viable environments for the use of micro turbines is the water distribution network where, by design, there is always excess energy since minimum pressures are to be maintained throughout the system, and the system is designed to meet future water supply needs of a planning period. Under these circumstances, maintaining the target pressures is not an easy task due to the increasing complexity of the water distribution network to supply future demands. As a result, pressures at several locations of the network tend to be higher than the required minimum pressures. In this paper, we outline a methodology to recover this excess energy using smart operation management and the best placement of micro turbines in the system. In this approach, the best micro turbine locations and their operation schedule is determined to recover as much available excess energy as possible from the water distribution network while satisfying the current demand for water supply and pressure. Genetic algorithms (GAs) are used to obtain optimal solutions and a “smart seeding” approach is developed to improve the performance of the GA. The Dover Township pump-driven water distribution system in New Jersey, United States of America (USA) was selected as the study area to test the proposed methodology. This pump-driven network was also converted into a hypothetical gravity-driven network to observe the differences between the energy recovery potential of the pump-driven and gravity-driven systems. The performance of the energy recovery system was evaluated by calculating the equivalent number of average American homes that can be fed by the energy produced and the resulting carbon-dioxide emission reductions that may be achieved. The results show that this approach is an effective tool for applications in renewable energy production in water distribution systems for small towns such as Dover Township. It is expected that, for larger water distribution systems with high energy usage, the energy recovery potential will be much higher.


Sign in / Sign up

Export Citation Format

Share Document