scholarly journals Effect of fouling on removal of trace organic compounds by nanofiltration

2011 ◽  
Vol 4 (1) ◽  
pp. 71-82 ◽  
Author(s):  
S. Hajibabania ◽  
A. Verliefde ◽  
J. E. Drewes ◽  
L. D. Nghiem ◽  
J. McDonald ◽  
...  

Abstract. The fate of chemical of concern is not yet fully understood during treatment of impaired waters. The aim of this paper is to assess the impact of different organic-based fouling layers on the removal of a large range of trace organics. Both model and real water samples (mixed with trace organic contaminants at environmental concentration of 2 μg l−1) were used to simulate fouling in nanofiltration under controlled environment. The new and fouled membranes were systematically characterised for surface charge, hydrophobicity and roughness. It was observed that fouling generally reduced the membrane surface charge; however, the alterations of the membrane hydrophobicity and surface roughness were dependent on the foulants composition. The rejection of charged trace organics was observed to be improved due to the increased electrostatic repulsion by fouled membranes and the adsorption of the trace organic chemicals onto organic matters. On the other hand, the removal of nonionic compounds decreased when fouling occurred, due to the presence of cake enhanced concentration polarization. The fouling layer structure was found to play an important role in the rejection of the trace organic compounds.

2011 ◽  
Vol 4 (1) ◽  
pp. 117-149 ◽  
Author(s):  
S. Hajibabania ◽  
A. Verliefde ◽  
J. E. Drewes ◽  
L. D. Nghiem ◽  
J. McDonald ◽  
...  

Abstract. The fate of chemical of concern is not yet fully understood during treatment of impaired waters. The aim of this paper is to assess the impact of different organic-based fouling layers on the removal of a large range of trace organics. Both model and real water samples (mixed with trace organic contaminants at environmental concentration of 2 μg l−1) were used to simulate fouling in NF under controlled environment. The new and fouled membranes were systematically characterised for surface charge, hydrophobicity and roughness. It was observed that fouling generally reduced the membrane surface charge; however, the alterations of the membrane hydrophobicity and surface roughness were dependent on the foulants composition. The rejection of charged trace organics was observed to be improved due to the increased electrostatic repulsion by fouled membranes and the adsorption of the trace organic chemicals onto organic matters. On the other hand, the removal of nonionic compounds decreased when fouling occurred, due to the presence of cake enhanced concentration polarization. The fouling layer structure was found to play an important role in the rejection of the trace organic compounds.


1986 ◽  
Vol 20 (3) ◽  
pp. 249-253 ◽  
Author(s):  
Stephen W. Maloney ◽  
Jacques. Manem ◽  
Joel. Mallevialle ◽  
Francois. Fiessinge

2002 ◽  
Vol 45 (1-12) ◽  
pp. 62-68 ◽  
Author(s):  
Michael R Moore ◽  
Walter Vetter ◽  
Caroline Gaus ◽  
Glen R Shaw ◽  
Jochen F Müller

Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3518
Author(s):  
Cyrus Rutere ◽  
Malte Posselt ◽  
Marcus A. Horn

The organic carbon in streambed sediments drives multiple biogeochemical reactions, including the attenuation of organic micropollutants. An attenuation assay using sediment microcosms differing in the initial total organic carbon (TOC) revealed higher microbiome and sorption associated removal efficiencies of trace organic compounds (TrOCs) in the high-TOC compared to the low-TOC sediments. Overall, the combined microbial and sorption associated removal efficiencies of the micropollutants were generally higher than by sorption alone for all compounds tested except propranolol whose removal efficiency was similar via both mechanisms. Quantitative real-time PCR and time-resolved 16S rRNA gene amplicon sequencing revealed that higher bacterial abundance and diversity in the high-TOC sediments correlated with higher microbial removal efficiencies of most TrOCs. The bacterial community in the high-TOC sediment samples remained relatively stable against the stressor effects of TrOC amendment compared to the low-TOC sediment community that was characterized by a decline in the relative abundance of most phyla except Proteobacteria. Bacterial genera that were significantly more abundant in amended relative to unamended sediment samples and thus associated with biodegradation of the TrOCs included Xanthobacter, Hyphomicrobium, Novosphingobium, Reyranella and Terrimonas. The collective results indicated that the TOC content influences the microbial community dynamics and associated biotransformation of TrOCs as well as the sorption potential of the hyporheic zone sediments.


Sign in / Sign up

Export Citation Format

Share Document