Seasonal storage of hydrogen in porous formations

Author(s):  
Katriona Edlmann ◽  
Niklas Heinemann ◽  
Leslie Mabon ◽  
Julien Mouli-Castillo ◽  
Ali Hassanpouryouzband ◽  
...  

<p>To meet global commitments to reach net-zero carbon emissions by 2050, the energy mix must reduce emissions from fossil fuels and transition to low carbon energy sources.  Hydrogen can support this transition by replacing natural gas for heat and power generation, decarbonising transport, and facilitating increased renewable energy by acting as an energy store to balance supply and demand. For the deployment at scale of green hydrogen (produced from renewables) and blue hydrogen (produced from steam reformation of methane) storage at different scales will be required, depending on the supply and demand scenarios. Production of blue hydrogen generates CO<sub>2</sub> as a by-product and requires carbon capture and storage (CCS) for carbon emission mitigation.  Near-future blue hydrogen production projects, such as the Acorn project located in Scotland, could require hydrogen storage alongside large-scale CO<sub>2 </sub>storage. Green hydrogen storage projects, such as renewable energy storage in rural areas e.g. Orkney in Scotland, will require smaller and more flexible low investment hydrogen storage sites. Our research shows that the required capacity can exist as engineered geological storage reservoirs onshore and offshore UK. We will give an overview of the hydrogen capacity required for the energy transition and assess the associated scales of storage required, where geological storage in porous media will compete with salt cavern storage as well as surface storage such as line packing or tanks.</p><p>We will discuss the key aspects and results of subsurface hydrogen storage in porous rocks including the potential reactivity of the brine / hydrogen / rock system along with the efficiency of multiple cycles of hydrogen injection and withdrawal through cushion gasses in porous rocks. We will also discuss societal views on hydrogen storage, exploring how geological hydrogen storage is positioned within the wider context of how hydrogen is produced, and what the place of hydrogen is in a low-carbon society. Based on what some of the key opinion-shapers are saying already, the key considerations for public and stakeholder opinion are less likely to be around risk perception and safety of hydrogen, but focussed on questions like ‘who benefits?’ ‘why do we need hydrogen in a low-carbon society?’ and ‘how can we do this in the public interest and not for the profits of private companies?’</p><p>We conclude that underground hydrogen storage in porous rocks can be an essential contributor to the low carbon energy transition.</p>

Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6452
Author(s):  
Dalia Streimikiene ◽  
Tomas Baležentis ◽  
Artiom Volkov ◽  
Mangirdas Morkūnas ◽  
Agnė Žičkienė ◽  
...  

The paper deals with the exposition of the main barriers and drivers of renewable energy usage in rural communities. Climate change mitigation is causing governments, policymakers, and international organizations worldwide to embark on policies, leading to increased use of renewable energy sources and improvement of energy efficiency. Climate change mitigation actions, including the Green Deal strategy in the EU, require satisfying the expanding energy demand and complying with the environmental restrictions. At the same time, the prevailing market structure and infrastructure relevant to the energy systems are undergoing a crucial transformation. Specifically, there has been a shift from centralized to more decentralized and interactive energy systems that are accompanied by a low-carbon energy transition. Smart Grid technology and other innovations in the area of renewable energy microgeneration technologies have enabled changes in terms of the roles of energy users: they can act as prosumers that are producing and consuming energy at the same time. Renewable energy generation that is allowing for deeper involvement of the citizens may render higher social acceptance, which, in turn, fuels the low-carbon energy transition. The collective energy prosumption in the form of energy cooperatives has become a widespread form of renewable energy initiatives in rural communities. Even though renewable energy consumption provides a lot of benefits and opportunities for rural communities, the fast penetration of renewables and energy prosumption encounter several important barriers in the rural areas. This paper analyses the main barriers and drivers of renewable energy initiatives in rural areas and provides policy implications for the low-carbon energy transition in rural areas.


2010 ◽  
Vol 14 (2) ◽  
pp. 83-93 ◽  
Author(s):  
Binu Parthan ◽  
Marianne Osterkorn ◽  
Matthew Kennedy ◽  
St. John Hoskyns ◽  
Morgan Bazilian ◽  
...  

2021 ◽  
Author(s):  
Osamah Alsayegh

Abstract This paper examines the energy transition consequences on the oil and gas energy system chain as it propagates from net importing through the transit to the net exporting countries (or regions). The fundamental energy system security concerns of importing, transit, and exporting regions are analyzed under the low carbon energy transition dynamics. The analysis is evidence-based on diversification of energy sources, energy supply and demand evolution, and energy demand management development. The analysis results imply that the energy system is going through technological and logistical reallocation of primary energy. The manifestation of such reallocation includes an increase in electrification, the rise of energy carrier options, and clean technologies. Under healthy and normal global economic growth, the reallocation mentioned above would have a mild effect on curbing the oil and gas primary energy demands growth. A case study concerning electric vehicles, which is part of the energy transition aspect, is presented to assess its impact on the energy system, precisely on the fossil fuel demand. Results show that electric vehicles are indirectly fueled, mainly from fossil-fired power stations through electric grids. Moreover, oil byproducts use in the electric vehicle industry confirms the reallocation of the energy system components' roles. The paper's contribution to the literature is the portrayal of the energy system security state under the low carbon energy transition. The significance of this representation is to shed light on the concerns of the net exporting, transit, and net importing regions under such evolution. Subsequently, it facilitates the development of measures toward mitigating world tensions and conflicts, enhancing the global socio-economic wellbeing, and preventing corruption.


2021 ◽  
Vol 13 (16) ◽  
pp. 8856
Author(s):  
Samiha Mjahed Hammami ◽  
Heyam Abdulrahman Al Moosa

Despite growing interest in issues of place attachment and land use changes, scholars of renewable energy have tended to overlook the ways that people–place relations affect local acceptance/opposition of renewable energy projects. We address this gap drawing on the concept of customer experience to capture the meaning of place attachment in a specific context of climate change adaptation (e.g., proposals to site large-scale low-carbon energy technologies such as wind farms) and deepening understanding of the role of place attachment in shaping community responses to the local siting of renewable energy technologies. This research adopts a phenomenological approach that focuses on the narrators’ impressions of their experience with the local place where they live (a village in Northeast Tunisia) as well as the meanings they attribute to the project. Results show that according to the evaluation of change, whether the renewable energy project enhances or disrupts the different aspects of place experience, residents will exhibit respectively either positive or negative emotions and attitudes and will take action accordingly either by supporting or protesting the project.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Pablo del Río ◽  
Luis Janeiro

Renewable energy sources (RES) play a critical role in the low-carbon energy transition. Although there is quite an abundant literature on the barriers to RES, the analysis of the electricity generation overcapacity as a barrier to further RES penetration has received scant attention. This paper tries to cover this gap. Its aim is to analyse the causes and consequences of overcapacity, with a special focus on the impact on RES deployment, using Spain as a case study. It also analyses the policies which may mitigate this problem in both the short and the longer terms.


Sign in / Sign up

Export Citation Format

Share Document