Clustering dependence structures of environmental extremes

Author(s):  
Edoardo Vignotto ◽  
Sebastian Engelke ◽  
Jakob Zscheischler

<p>Identifying hidden spatial patterns that define sub-regions characterized by a similar behaviour is a central topic in statistical climatology. This task, often called regionalization in hydrology, is helpful for recognizing areas in which the variables under consideration have a similar stochastic distribution and thus, potentially, in reducing the dimensionality of the data. Many examples are available in this context, spanning from hydrology to weather and climate science. However, the majority of regionalization techniques focuses on the spatial clustering of a single variable of interest. Given the often severe impacts of climate extremes at the regional scale, here we develop an algorithm that identifies homogeneous spatial sub-regions that are characterized by a common bivariate dependence structure in the tails of a bivariate distribution.  In particular, we use a novel nonparametric distance able to capture the similarities and differences in the tail behaviour of bivariate distributions as the core of our clustering procedure. We apply the approach to identify homogeneous regions with varying coherence in the co-occurrence of sea level pressure and precipitation extremes in Great Britain and Ireland.</p>

2017 ◽  
Vol 30 (17) ◽  
pp. 6927-6944 ◽  
Author(s):  
A. Hannachi ◽  
N. Trendafilov

Conventional analysis methods in weather and climate science (e.g., EOF analysis) exhibit a number of drawbacks including scaling and mixing. These methods focus mostly on the bulk of the probability distribution of the system in state space and overlook its tail. This paper explores a different method, the archetypal analysis (AA), which focuses precisely on the extremes. AA seeks to approximate the convex hull of the data in state space by finding “corners” that represent “pure” types or archetypes through computing mixture weight matrices. The method is quite new in climate science, although it has been around for about two decades in pattern recognition. It encompasses, in particular, the virtues of EOFs and clustering. The method is presented along with a new manifold-based optimization algorithm that optimizes for the weights simultaneously, unlike the conventional multistep algorithm based on the alternating constrained least squares. The paper discusses the numerical solution and then applies it to the monthly sea surface temperature (SST) from HadISST and to the Asian summer monsoon (ASM) using sea level pressure (SLP) from ERA-40 over the Asian monsoon region. The application to SST reveals, in particular, three archetypes, namely, El Niño, La Niña, and a third pattern representing the western boundary currents. The latter archetype shows a particular trend in the last few decades. The application to the ASM SLP anomalies yields archetypes that are consistent with the ASM regimes found in the literature. Merits and weaknesses of the method along with possible future development are also discussed.


2020 ◽  
Vol 20 (2) ◽  
pp. 489-504 ◽  
Author(s):  
Anaïs Couasnon ◽  
Dirk Eilander ◽  
Sanne Muis ◽  
Ted I. E. Veldkamp ◽  
Ivan D. Haigh ◽  
...  

Abstract. The interaction between physical drivers from oceanographic, hydrological, and meteorological processes in coastal areas can result in compound flooding. Compound flood events, like Cyclone Idai and Hurricane Harvey, have revealed the devastating consequences of the co-occurrence of coastal and river floods. A number of studies have recently investigated the likelihood of compound flooding at the continental scale based on simulated variables of flood drivers, such as storm surge, precipitation, and river discharges. At the global scale, this has only been performed based on observations, thereby excluding a large extent of the global coastline. The purpose of this study is to fill this gap and identify regions with a high compound flooding potential from river discharge and storm surge extremes in river mouths globally. To do so, we use daily time series of river discharge and storm surge from state-of-the-art global models driven with consistent meteorological forcing from reanalysis datasets. We measure the compound flood potential by analysing both variables with respect to their timing, joint statistical dependence, and joint return period. Our analysis indicates many regions that deviate from statistical independence and could not be identified in previous global studies based on observations alone, such as Madagascar, northern Morocco, Vietnam, and Taiwan. We report possible causal mechanisms for the observed spatial patterns based on existing literature. Finally, we provide preliminary insights on the implications of the bivariate dependence behaviour on the flood hazard characterisation using Madagascar as a case study. Our global and local analyses show that the dependence structure between flood drivers can be complex and can significantly impact the joint probability of discharge and storm surge extremes. These emphasise the need to refine global flood risk assessments and emergency planning to account for these potential interactions.


2019 ◽  
Vol 36 (4) ◽  
pp. 569-586
Author(s):  
Ricardo Puziol Oliveira ◽  
Jorge Alberto Achcar

Purpose The purpose of this paper is to provide a new method to estimate the reliability of series system by using a discrete bivariate distribution. This problem is of great interest in industrial and engineering applications. Design/methodology/approach The authors considered the Basu–Dhar bivariate geometric distribution and a Bayesian approach with application to a simulated data set and an engineering data set. Findings From the obtained results of this study, the authors observe that the discrete Basu–Dhar bivariate probability distribution could be a good alternative in the analysis of series system structures with accurate inference results for the reliability of the system under a Bayesian approach. Originality/value System reliability studies usually assume independent lifetimes for the components (series, parallel or complex system structures) in the estimation of the reliability of the system. This assumption in general is not reasonable in many engineering applications, since it is possible that the presence of some dependence structure between the lifetimes of the components could affect the evaluation of the reliability of the system.


Author(s):  
Anaïs Couasnon ◽  
Dirk Eilander ◽  
Sanne Muis ◽  
Ted I. E. Veldkamp ◽  
Ivan D. Haigh ◽  
...  

Abstract. The interaction between physical drivers from oceanographic, hydrological, and meteorological processes in coastal areas can result in compound flooding. Compound flood events, like Cyclone Idai and Hurricane Harvey, have revealed the devastating consequences of the co-occurrence of coastal and river floods. A number of studies have recently investigated the likelihood of compound flooding at the continental scale based on simulated variables of flood drivers such as storm surge, precipitation, and river discharges. At the global scale, this has only been performed based on observations, thereby excluding a large extent of the global coastline. The purpose of this study is to fill this gap and identify potential hotspots of compound flooding from river discharge and storm surge extremes in river mouths globally. To do so, we use daily time-series of river discharge and storm surge from state-of-the-art global models driven with consistent meteorological forcing from reanalysis datasets. We measure the compound flood potential by analysing both variables with respect to their timing, joint statistical dependence, and joint return period. We find many hotspot regions of compound flooding that could not be identified in previous global studies based on observations alone, such as: Madagascar, Northern Morocco, Vietnam, and Taiwan. We report possible causal mechanisms for the observed spatial patterns based on existing literature. Finally, we provide preliminary insights on the implications of the bivariate dependence behaviour on the flood hazard characterisation using Madagascar as a case study. Our global and local analyses show that the dependence structure between flood drivers can be complex and can significantly impact the joint probability of discharge and storm surge extremes. These emphasise the need to refine global flood risk assessments and emergency planning to account for these potential interactions.


2014 ◽  
Vol 51 (A) ◽  
pp. 203-212 ◽  
Author(s):  
Paul Embrechts ◽  
Enkelejd Hashorva ◽  
Thomas Mikosch

In this paper we work in the framework of a k-dimensional vector of log-linear risks. Under weak conditions on the marginal tails and the dependence structure of a vector of positive risks, we derive the asymptotic tail behaviour of the aggregated risk and present an application concerning log-normal risks with stochastic volatility.


2010 ◽  
Vol 13 (4) ◽  
pp. 652-660 ◽  
Author(s):  
M. J. Monem ◽  
S. M. Hashemy

Improving the current operation and maintenance activities is one of the main steps in achieving higher performance of irrigation networks. Improving the irrigation network management, influenced by different spatial and temporal parameters, is confronted with special difficulties. One of the controversial issues often faced by decision-makers is how to cope with the spatial diversity of irrigation systems. Homogeneous area detection out of the irrigation networks could improve the current management of networks. The idea behind this research is to present a quantitative benchmark for exploring the homogeneous areas with similar physical attributes out of the network region. Five physical attributes, such as length, capacity, number of intakes, number of conveyance structures and the covered irrigated area for each canal reach, are used for spatial clustering. Two fuzzy clustering algorithms, namely FCM and GK, are applied to the Ghazvin irrigation network. Using a clustering validity index, SC, shows that the GK algorithm is the more appropriate tool for clustering of the considered dataset. According to the results the optimal number of clusters for the Ghazvin irrigation project is derived as nine clusters and the irrigated district is classified into nine homogeneous areas. Physical homogeneous regions provide a context for better and easier decision-making.


2018 ◽  
Vol 31 (18) ◽  
pp. 7533-7548 ◽  
Author(s):  
C. Munday ◽  
R. Washington

An important challenge for climate science is to understand the regional circulation and rainfall response to global warming. Unfortunately, the climate models used to project future changes struggle to represent present-day rainfall and circulation, especially at a regional scale. This is the case in southern Africa, where models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) overestimate summer rainfall by as much as 300% compared to observations and tend to underestimate rainfall in Madagascar and the southwest Indian Ocean. In this paper, we explore the climate processes associated with the rainfall bias, with the aim of assessing the reliability of the CMIP5 ensemble and highlighting important areas for model development. We find that the high precipitation rates in models that are wet over southern Africa are associated with an anomalous northeasterly moisture transport (~10–30 g kg−1 s−1) that penetrates across the high topography of Tanzania and Malawi and into subtropical southern Africa. This transport occurs in preference to a southeasterly recurvature toward Madagascar that is seen in drier models and reanalysis data. We demonstrate that topographically related model biases in low-level flow are important for explaining the intermodel spread in rainfall; wetter models have a reduced tendency to block the oncoming northeasterly flow compared to dry models. The differences in low-level flow among models are related to upstream wind speed and model representation of topography, both of which should be foci for model development.


Sign in / Sign up

Export Citation Format

Share Document