Gravity Field Estimation from GRACE Follow-On Data: Results from CSR Analyses

Author(s):  
Srinivas Bettadpur ◽  
Himanshu Save ◽  
Peter Nagel ◽  
Nadège Pie ◽  
Steven Poole ◽  
...  

<p>At the time of presentation, nearly two years of flight data from the joint NASA/GFZ GRACE Folllow-On mission will have been collected. In this time, gravity field models have been produced using two independent inter-satellite tracking systems - the MWI and the LRI using radio and optical interferometry, respectively. The data have been analyzed over more than two complete cycles of the sun relative to the orbit plane, allowing a characterization of the environmental impacts on the flight data. Extended duration of analyses have also permitted an assessment of the GRACE-FO data relative to the corresponding GRACE data.</p><p>This poster presents the status and lessons learned from two years of estimation of Earth gravity field models from the GRACE-FO data at the science data system component at the University of Texas Center for Space Research.</p>


2015 ◽  
Vol 6 (2) ◽  
pp. 101-108 ◽  
Author(s):  
A. P. Karpik ◽  
V. F. Kanushin ◽  
I. G. Ganagina ◽  
D. N. Goldobin ◽  
E. M. Mazurova




2015 ◽  
Vol 5 (1) ◽  
Author(s):  
T. D. Papanikolaou ◽  
N. Papadopoulos

AbstractThe present study aims at the validation of global gravity field models through numerical investigation in gravity field functionals based on spherical harmonic synthesis of the geopotential models and the analysis of terrestrial data. We examine gravity models produced according to the latest approaches for gravity field recovery based on the principles of the Gravity field and steadystate Ocean Circulation Explorer (GOCE) and Gravity Recovery And Climate Experiment (GRACE) satellite missions. Furthermore, we evaluate the overall spectrum of the ultra-high degree combined gravity models EGM2008 and EIGEN-6C3stat. The terrestrial data consist of gravity and collocated GPS/levelling data in the overall Hellenic region. The software presented here implements the algorithm of spherical harmonic synthesis in a degree-wise cumulative sense. This approach may quantify the bandlimited performance of the individual models by monitoring the degree-wise computed functionals against the terrestrial data. The degree-wise analysis performed yields insight in the short-wavelengths of the Earth gravity field as these are expressed by the high degree harmonics.



2020 ◽  
Vol 12 (3) ◽  
pp. 586 ◽  
Author(s):  
Bihter Erol ◽  
Mustafa Serkan Işık ◽  
Serdar Erol

The launch of dedicated satellite missions at the beginning of the 2000s led to significant improvement in the determination of Earth gravity field models. As a consequence of this progress, both the accuracies and the spatial resolutions of the global geopotential models increased. However, the spectral behaviors and the accuracies of the released models vary mainly depending on their computation strategies. These strategies are briefly explained in this article. Comprehensive quality assessment of the gravity field models by means of spectral and statistical analyses provides a comparison of the gravity field mapping accuracies of these models, as well as providing an understanding of their progress. The practical benefit of these assessments by means of choosing an optimal model with the highest accuracy and best resolution for a specific application is obvious for a broad range of geoscience applications, including geodesy and geophysics, that employ Earth gravity field parameters in their studies. From this perspective, this study aims to evaluate the GOCE High-Level Processing Facility geopotential models including recently published sixth releases using different validation methods recommended in the literature, and investigate their performances comparatively and in addition to some other models, such as GOCO05S, GOGRA04S and EGM2008. In addition to the validation statistics from various countries, the study specifically emphasizes the numerical test results in Turkey. It is concluded that the performance improves from the first generation RL01 models toward the final RL05 models, which were based on the entire mission data. This outcome was confirmed when the releases of different computation approaches were considered. The accuracies of the RL05 models were found to be similar to GOCO05S, GOGRA04S and even to RL06 versions but better than EGM2008, in their maximum expansion degrees. Regarding the results obtained from these tests using the GPS/leveling observations in Turkey, the contribution of the GOCE data to the models was significant, especially between the expansion degrees of 100 and 250. In the study, the tested geopotential models were also considered for detailed geoid modeling using the remove-compute-restore method. It was found that the best-fitting geopotential model with its optimal expansion degree (please see the definition of optimal degree in the article) improved the high-frequency regional geoid model accuracy by almost 15%.



2021 ◽  
Vol 51 (1) ◽  
pp. 47-61
Author(s):  
Adam NOVÁK ◽  
Juraj JANÁK ◽  
Barbora KOREKÁČOVÁ

Study presented in this paper is focused on comparison and statistical assessment of differences between the selected Level 2 products of the satellite mission Gravity Recovery and Climate Experiment (GRACE). Global monthly gravity field models in terms of spherical harmonic coefficients produced by three institutes of GRACE Science Data System are compared with the partially independent MASCON global gravity field model. Detailed comparison and statistical analysis of differences is performed in 5 selected river basins: Amazon, Congo, Danube, Yenisei and Lena. For each spherical harmonic solution, 8 different filtrations available at International Center for Global Gravity Field Models (ICGEM) are tested over the time span from April 2002 to July 2016. Fischer test at two significance levels 10% and 5% has been performed in order to qualify the statistical significance between the particular solutions.





2020 ◽  
Author(s):  
Annette Eicker ◽  
Laura Jensen ◽  
Viviana Wöhnke ◽  
Andreas Kvas ◽  
Henryk Dobslaw ◽  
...  

<p>Over the recent years, the computation of temporally high-resolution (daily) GRACE gravity field solutions has advanced as an alternative to the processing of monthly models. In this presentation we will show that recent processing improvements incorporated in the latest version of daily gravity field models (ITSG-Grace2018) now allow for the investigation of water flux signals on the continents down to time scales of a few days.</p><p>Time variations in terrestrial water storage derived from GRACE can be related to atmospheric net-fluxes of precipitation (P), evapotranspiration (E) and lateral runoff (R) via the terrestrial water balance equation, which makes GRACE a new and completely independent data set for constraining hydro-meteorological observations and the output of atmospheric reanalyses.</p><p>In our study, band-pass filtered water fluxes are derived from the daily GRACE water storage time series by first applying a numerical differentiation filter and subsequent high-pass filtering to isolate fluxes at periods between 5 and 30 days. We can show that on these time scales GRACE is able to identify quality differences between different global reanalyses, e.g. the improvements in the latest reanalysis ERA5 of the European Centre for Medium-Range Weather Forecasts (ECWMF) over its direct predecessor ERA-Interim.</p><p>We can further demonstrate that only the very recent progress in GRACE data processing has enabled the use of daily GRACE time series for such an evaluation of high-frequency atmospheric fluxes. The accuracy of the previous daily GRACE time series ITSG-Grace2016 would not have been sufficient to carry out such an assessment.</p>



2017 ◽  
Vol 8 (4) ◽  
pp. 246-252 ◽  
Author(s):  
Tianhe Xu ◽  
Lei Ren ◽  
Ruru Gao


Geosciences ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 441
Author(s):  
Thomas D. Papanikolaou ◽  
Dimitrios Tsoulis

An analysis of current static and time-variable gravity field models is presented focusing on the medium to high frequencies of the geopotential as expressed by the spherical harmonic coefficients. A validation scheme of the gravity field models is implemented based on dynamic orbit determination that is applied in a degree-wise cumulative sense of the individual spherical harmonics. The approach is applied to real data of the Gravity Field and Steady-State Ocean Circulation (GOCE) and Gravity Recovery and Climate Experiment (GRACE) satellite missions, as well as to GRACE inter-satellite K-band ranging (KBR) data. Since the proposed scheme aims at capturing gravitational discrepancies, we consider a few deterministic empirical parameters in order to avoid absorbing part of the gravity signal that may be included in the monitored orbit residuals. The present contribution aims at a band-limited analysis for identifying characteristic degree ranges and thresholds of the various GRACE- and GOCE-based gravity field models. The degree range 100–180 is investigated based on the degree-wise cumulative approach. The identified degree thresholds have values of 130 and 160 based on the GRACE KBR data and the GOCE orbit analysis, respectively.



2012 ◽  
Vol 61 (1) ◽  
pp. 1-17 ◽  
Author(s):  
Mehdi Eshagh ◽  
Jean-Michel Lemoine ◽  
Pascal Gegout ◽  
Richard Biancale


Sign in / Sign up

Export Citation Format

Share Document