Observational analysis of Mediterranean decadal hydroclimate variability: role of Atlantic-Mediterranean sea surface temperatures

Author(s):  
Roberto Suarez-Moreno ◽  
Richard Seager ◽  
Yochanan Kushnir

<p>The Mediterranean region is a semi-arid climate zone, subject to droughts, where water resources are scarce and observational data and climate models suggest a tendency towards greater aridification. Moreover, the Mediterranean region is an area of social and political instability and, in the Middle East, open warfare, which might be further stressed by climate change. The North Atlantic Oscillation (NAO) is the dominant mode of winter climate variability in the North Atlantic sector, playing the leading role in driving Mediterranean hydroclimate variability from seasonal to multidecadal timescales, whereas the influence of sea surface temperatures (SSTs) remains unclear. Nevertheless, the mechanism underlying the NAO is still under debate, and the possibility for coupled ocean-atmosphere decadal interactions, for which several mechanisms have been proposed, would support the role of SST. Based on observations and reanalysis, we conduct a statistical-observational analysis to explore the decadal drivers of Mediterranean hydroclimate variability for the winter half-year (October-to-March) wet season. Our results put forward the uneven intraseasonal influence of the decadal NAO, being the leading driver during the winter peak season (December-to-March), while decadal Atlantic-Mediterranean SST variability exhibit a consistent link for the first months of the wet season (October-to-January). These results emphasize the need to further explore the ocean-atmosphere feedback mechanisms and their possible modulations under climate change. Understanding these mechanisms is essential to improve predictability of hydroclimate in the Mediterranean region, leading to adaptation strategies that mitigate the effect of climate change on the vulnerable population.</p>

2018 ◽  
Vol 52 (1-2) ◽  
pp. 417-438 ◽  
Author(s):  
Ralf Hand ◽  
Noel S. Keenlyside ◽  
Nour-Eddine Omrani ◽  
Jürgen Bader ◽  
Richard J. Greatbatch

2021 ◽  
Author(s):  
Paula Lorenzo Sánchez ◽  
Leonardo Aragão

<p>The North Atlantic Oscillation (NAO) has been widely recognized as one of the main patterns of atmospheric variability over the northern hemisphere, helping to understand variations on the North Atlantic Jet (NAJ) position and its influence on storm-tracks, atmospheric blocking and Rossby Wave breaking. Among several relevant teleconnection patterns identified through different timescales, the most prominent ones are found for northern Europe during winter months, when positive (negative) phases of NAO are related to wetter (drier) conditions. Although it is not well defined yet, an opposite connection is observed for the Mediterranean region, where negative NAO values are often associated with high precipitation. Therefore, the main goal of this study is to identify which regions and periods of the year are the most susceptible to abundant NAO-related precipitation throughout the Italian Peninsula. For doing so, the last 42 years period (1979-2020) was analysed using the Fifth Generation ECMWF Atmospheric ReAnalysis of the Global Climate (ERA5). The NAO index was calculated using the Mean Sea Level Pressure (MSLP) extracted from the nearest gridpoints to Reykjavik, Ponta Delgada, Lisbon and Gibraltar, with a time resolution of one hour and horizontal spatial resolution of 0.25ºx0.25º. Both NAO index and MSLP time series were validated for different timescales (hourly, daily, monthly and seasonal) using the Automated Surface Observing System data and the Climatic Research Unit (CRU) high-resolution dataset (based on measured data). High correlations, ranging from 0.92 to 0.98, were found for all stations, timescales and evaluated parameters. To quantify the influence of NAO over the Mediterranean region, the monthly averaged ERA5 ‘total precipitation’ data over the Italian Peninsula [35-48º N; 5-20º E] were used. As expected, the results concerning NAO x Precipitation presented the best correlations when analysed monthly, confirming some of the already known NAO signatures over the Italian Peninsula: higher correlations during winter and over the Tyrrhenian coast, and lower correlations during summer and over the Apennines, the Adriatic Sea and the Ionian Sea. On the other hand, the precipitation over the Alps and the Tunisian coast presented a remarkable signature of positive NAO values that, despite a lower statistical significance (85-90%), is in agreement with recent findings of observational studies. In addition, significant negative correlations were identified for the spring and autumn months over the Tyrrhenian area. Among those, the high correlations found during May are particularly interesting, as they follow the behaviour described in recent studies performed using the same high-resolution dataset (ERA5), which have identified an increased number of cyclones over the Mediterranean during this month. This connection suggests that NAO could also be used to explore the potential penetration of the North Atlantic depressions into the Mediterranean Basin. </p><p>Keywords: NAO; Teleconnections; ERA5; ReAnalysis; Mediterranean; Climatology.</p>


Author(s):  
Harry J Dowsett ◽  
Mark A Chandler ◽  
Marci M Robinson

The Mid-Pliocene is the most recent interval in the Earth's history to have experienced warming of the magnitude predicted for the second half of the twenty-first century and is, therefore, a possible analogue for future climate conditions. With continents basically in their current positions and atmospheric CO 2 similar to early twenty-first century values, the cause of Mid-Pliocene warmth remains elusive. Understanding the behaviour of the North Atlantic Ocean during the Mid-Pliocene is integral to evaluating future climate scenarios owing to its role in deep water formation and its sensitivity to climate change. Under the framework of the Pliocene Research, Interpretation and Synoptic Mapping (PRISM) sea surface reconstruction, we synthesize Mid-Pliocene North Atlantic studies by PRISM members and others, describing each region of the North Atlantic in terms of palaeoceanography. We then relate Mid-Pliocene sea surface conditions to expectations of future warming. The results of the data and climate model comparisons suggest that the North Atlantic is more sensitive to climate change than is suggested by climate model simulations, raising the concern that estimates of future climate change are conservative.


2017 ◽  
Author(s):  
Camille Li ◽  
Clio Michel ◽  
Lise Seland Graff ◽  
Ingo Bethke ◽  
Giuseppe Zappa ◽  
...  

Abstract. This study investigates the global response of the midlatitude atmospheric circulation to 1.5 °C and 2.0 °C of warming using the HAPPI Half a degree Additional warming, Projections, Prognosis and Impacts ensemble, with a focus on the winter season. Characterizing and understanding this response is critical for accurately assessing the near-term regional impacts of climate change and the benefits of limiting warming to the 1.5 °C above pre-industrial levels, as advocated by the Paris Agreement of the United Nations Framework Convention on Climate Change (UNFCCC). The HAPPI experimental design allows an assessment of uncertainty in the circulation response due to model dependence and internal variability. Internal variability is found to dominate the multi-model mean response of the jet streams, storm tracks and stationary waves across most of the midlatitudes; larger signals in these features are mostly consistent with those seen in more strongly forced warming scenarios. Signals that emerge in the 1.5 °C experiment are a weakening of storm activity over North America, an inland shift of the North American stationary ridge, an equatorward shift of the North Pacific jet exit, and an equatorward intensification of the South Pacific jet. Signals that emerge under an additional 0.5 °C of warming include a poleward shift of the North Atlantic jet exit, an eastward extension of the North Atlantic storm track, and an intensification on the flanks of the Southern Hemisphere storm track. Case studies explore the implications of these circulation responses for precipitation impacts in the Mediterranean, western Europe and the North American west coast, paying particular attention to possible outcomes at the tails of the response distributions. For example, the projected weakening of the Mediterranean storm track emerges in the 2.0 °C world, though the ensemble spread still allows for both wetting and drying responses.


2009 ◽  
Vol 5 (4) ◽  
pp. 615-632 ◽  
Author(s):  
I. Dormoy ◽  
O. Peyron ◽  
N. Combourieu Nebout ◽  
S. Goring ◽  
U. Kotthoff ◽  
...  

Abstract. Pollen-based climate reconstructions were performed on two high-resolution pollen marines cores from the Alboran and Aegean Seas in order to unravel the climatic variability in the coastal settings of the Mediterranean region between 15 000 and 4000 years BP (the Lateglacial, and early to mid-Holocene). The quantitative climate reconstructions for the Alboran and Aegean Sea records focus mainly on the reconstruction of the seasonality changes (temperatures and precipitation), a crucial parameter in the Mediterranean region. This study is based on a multi-method approach comprising 3 methods: the Modern Analogues Technique (MAT), the recent Non-Metric Multidimensional Scaling/Generalized Additive Model method (NMDS/GAM) and Partial Least Squares regression (PLS). The climate signal inferred from this comparative approach confirms that cold and dry conditions prevailed in the Mediterranean region during the Oldest and Younger Dryas periods, while temperate conditions prevailed during the Bølling/Allerød and the Holocene. Our records suggest a West/East gradient of decreasing precipitation across the Mediterranean region during the cooler Late-glacial and early Holocene periods, similar to present-day conditions. Winter precipitation was highest during warm intervals and lowest during cooling phases. Several short-lived cool intervals (i.e. Older Dryas, another oscillation after this one (GI-1c2), Gerzensee/Preboreal Oscillations, 8.2 ka event, Bond events) connected to the North Atlantic climate system are documented in the Alboran and Aegean Sea records indicating that the climate oscillations associated with the successive steps of the deglaciation in the North Atlantic area occurred in both the western and eastern Mediterranean regions. This observation confirms the presence of strong climatic linkages between the North Atlantic and Mediterranean regions.


2012 ◽  
Vol 8 (2) ◽  
pp. 637-651 ◽  
Author(s):  
B. J. Dermody ◽  
H. J. de Boer ◽  
M. F. P. Bierkens ◽  
S. L. Weber ◽  
M. J. Wassen ◽  
...  

Abstract. We present a reconstruction of the change in climatic humidity around the Mediterranean between 3000–1000 yr BP. Using a range of proxy archives and model simulations we demonstrate that climate during this period was typified by a millennial-scale seesaw in climatic humidity between Spain and Israel on one side and the Central Mediterranean and Turkey on the other, similar to precipitation anomalies associated with the East Atlantic/West Russia pattern in current climate. We find that changes in the position and intensity of the jet stream indicated by our analysis correlate with millennial changes in North Atlantic sea surface temperature. A model simulation indicates the proxies of climatic humidity used in our analysis were unlikely to be influenced by climatic aridification caused by deforestation during the Roman Period. That finding is supported by an analysis of the distribution of archaeological sites in the Eastern Mediterranean which exhibits no evidence that human habitation distribution changed since ancient times as a result of climatic aridification. Therefore we conclude that changes in climatic humidity over the Mediterranean during the Roman Period were primarily caused by a modification of the jet stream linked to sea surface temperature change in the North Atlantic. Based on our findings, we propose that ocean-atmosphere coupling may have contributed to regulating Atlantic Meridional Overturning Circulation intensity during the period of analysis.


Sign in / Sign up

Export Citation Format

Share Document