Trade-offs, synergies and economic relationships among ecosystem services

Author(s):  
Jullian Sone ◽  
Gabriela Gesualdo ◽  
Lívia Rosalem ◽  
Paulo Oliveira ◽  
Edson Wendland

<p>All land uses provide ecosystem services (ES), which have been depleted due to the lack of soil conservation practices along with the intensive use of land for meeting the water-energy-food nexus demand. The economic incentive is a first step towards attracting farmers’ interest in protecting and conserving ES. Farmers, stakeholders, and decision-makers need to understand the value and importance of watershed services through a straightforward cost-effective analysis of conserving and/or protecting them. Economic feasibility affects the volunteer enrolment in payment for ecosystem services (PES) programmes for adopting soil conservation practices in rural areas; nonetheless, it is still poorly understood regarding investments in ES restoration and preservation. There is very little information on the restoration of water provisioning in rural basins that participated in PES programmes. Additionally, most studies focus on programmes for one specific type of landowner, putting aside the plurality of landowners in the basin. It undermines PES programmes implementation when assessing individual preferences and willingness to pay. Thus, we aim to compare costs and benefits from incentivising soil conservation practices and forest restoration in a rural basin through a cost-benefit analysis and quantitative improvements of water provision and soil erosion control; moreover, we will use hydrological and economic-decision models to asses the uncertainties from the relationship between soil conservation practices and watershed services under climate change. The Guariroba River Basin (36,200 ha), located on the rural side of Campo Grande city ‒ Brazil, currently provides 34% of the drinking water demand in the urban area — once provided about 50% — since converting native Cerrado vegetation of the basin for cattle farming has led to a decrease in water provisioning due to soil degradation and, consequently, reservoir siltation. In 2009, the city hall launched a PES Programme called ‘Manancial Vivo’ (MVP). In this context, it is fundamental to understand how uncertainties in the input data, economic models structure, and parameters estimation are consistently integrated into hydro-economic models. By this, we will assess different hydro-economic scenarios of water availability to understand uncertainties and hydrological trade-offs. We expect to respond to some questions: whether the Brazilian PES programme model is environmentally and economically adequate; how water-food-energy insecurity nexus affects PES policies; and what role PES plays in building resilience to water supply systems and helping people to adapt to climate change effects.</p>

Author(s):  
Liang-Jie Wang ◽  
Shuai Ma ◽  
Yong-Peng Qiao ◽  
Jin-Chi Zhang

Development of suitable ecological protection and restoration policies for sustainable management needs to assess the potential impacts of future land use and climate change on ecosystem services. The two ecological shelters and three belts (TSTB) are significant for improving ecosystem services and ensuring China’s and global ecological security. In this study, we simulated land use in 2050 and estimated the spatial distribution pattern of net primary productivity (NPP), water yield, and soil conservation from 2010 to 2050 under future climate change. The results showed that water yield, NPP, and soil conservation exhibited a spatial pattern of decreasing from southeast to northwest, while in terms of the temporal pattern, water yield and NPP increased, but soil conservation decreased. Water yield was mainly influenced by precipitation, NPP was affected by temperature and implementation of ecological restoration, and soil conservation was controlled by precipitation and slope. There was a strong spatial heterogeneity between trade-offs and synergies. In terms of the temporal, with the combination of climate change and ecological restoration, there was a synergistic relationship between water yield and NPP. However, the relationships between water yield and soil conservation, and between NPP and soil conservation were characterized by trade-offs. In the process of ecological construction, it is necessary to consider the differences between overall and local trade-offs and synergies, as well as formulate sustainable ecological management policies according to local conditions. Understanding the response of ecosystem services to future climate change and land use policies can help address the challenges posed by climate change and achieve sustainable management of natural resources.


Land ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 582
Author(s):  
Peng Tian ◽  
Jialin Li ◽  
Luodan Cao ◽  
Ruiliang Pu ◽  
Hongbo Gong ◽  
...  

Ecosystem services (ESs) is a term used to describe the foundations of the well-being of human society, and several relevant studies have been carried out in this area. However, given the fact that the complex trade-offs/synergy relationships of ESs are a challenging area, studies on matching mechanisms for ES supply and demand are still rare. In this study, using the InVEST model, ArcGIS, and other professional tools, we first mapped and quantitatively evaluated the supply and demand of five ES types (water yield, soil conservation, carbon retention, food supply, and leisure and entertainment) in Hangzhou, China, based on land use, meteorology, soil, and socio-economic data. Then, we analyzed the matching characteristics between the supply and demand of these ESs and analyzed the complex trade-offs and synergy between the supply and demand of ESs and factors affecting ESs. The results of this analysis indicate that although the ES supply and demand of carbon retention tended to be out of balance (supply was less than demand), the supply and demand of the other four ES types (i.e., water yield, soil conservation, food supply, and leisure and entertainment) were in balance (supply exceeded demand). Finally, the spatial heterogeneity of the supply and demand of ESs in Hangzhou was significant, especially in urban areas in the northeast and mountainous areas in the southwest. The supply of ESs was based on trade-offs, whereas the demand of ESs was based on synergy. Our results further show that the supply and demand of ESs in the urban area in Hangzhou were out of balance, whereas the supply and demand of ESs in the western region were coordinated. Therefore, the linkage of ES flows between this urban area and the western region should be strengthened. This innovative study could provide useful information for regional land use planning and environmental protection.


2021 ◽  
Vol 13 (4) ◽  
pp. 566
Author(s):  
Xiangkun Qi ◽  
Qian Li ◽  
Yuemin Yue ◽  
Chujie Liao ◽  
Lu Zhai ◽  
...  

Under the transformation from over-cultivation to ecological protection in China’s karst, how human activities affect ecosystem services should be studied. This study combined satellite imagery and ecosystem models (Carnegie-Ames-Stanford Approach (CASA), Revised Universal Soil Loss Equation (RUSLE) and Integrated Valuation of Ecosystem Services and Trade-offs (InVEST)) to evaluate primary ecosystem services (net ecosystem productivity (NEP), soil conservation and water yield) in a typical karst region (Huanjiang County). The relationships between human activities and ecosystem services were also examined. NEP increased from 441.7 g C/m2/yr in 2005 to 582.19 g C/m2/yr in 2015. Soil conservation also increased from 4.7 ton/ha to 5.5 ton/ha. Vegetation recovery and the conversion of farmland to forest, driven largely by restoration programs, contributed to this change. A positive relationship between increases in NEP, soil conservation and rural-urban migration (r = 0.62 and 0.53, P < 0.01, respectively) indicated decreasing human dependence on land reclamation and naturally regenerated vegetation. However, declining water yield from 784.3 to 724.5 mm highlights the trade-off between carbon sequestration and water yield should be considered. Our study suggests that conservation is critical to vegetation recovery in this region and that easing human pressure on land will play an important role.


2018 ◽  
Vol 28 (7) ◽  
pp. 1884-1896 ◽  
Author(s):  
Katharina Albrich ◽  
Werner Rammer ◽  
Dominik Thom ◽  
Rupert Seidl

2021 ◽  
Author(s):  
Tiantian Chen ◽  
Li Peng ◽  
Qiang Wang

Abstract The Grain to Green Program (GTGP), as a policy tool for advancing ecological progress, has been operating for 20 years and has played an important role in improving ecosystem service values. However, there are few studies on the trade-off/synergy changes in ecosystem services during the implementation of the GTGP and how to select the optimal scheme for regional ecological security based on the trade-off relationship. Thus, we took the Chengdu-Chongqing urban agglomeration (CCUA) in southwestern China as the study area; we used multisource data and the corresponding models and methods to estimate the regional food production, carbon sequestration, water yield, soil conservation and habitat quality services. Then, we clarified the trade-off/synergy relationships among ecosystem services from 2000 to 2015 by spatial analysis and statistical methods and evaluated the influential mechanism of the GTGP on trade-offs between ecosystem services. Finally, different risk scenarios were constructed by the ordered weighted average algorithm (OWA), and the regional ecological security pattern was simulated under the principle of the best protection efficiency and the highest trade-off degree. We found that (1) the trade-offs/synergies of regional ecosystem services changed significantly from 2000 to 2015. Among them, food production, water yield and soil conservation have always had trade-off relationships, while carbon sequestration, soil conservation and habitat quality have all had synergistic relationships. The relationships between carbon sequestration and water yield and food production changed from non-correlated to trade-off/synergistic, and the relationship between habitat quality and food production and water yield was not obvious. (2) Except for carbon sequestration service, the trade-off intensity between other ecosystem services decreased, indicating that the change trend of ecosystem services in the same direction was obvious. (3) The GTGP has been an important factor affecting the trade-off intensity of regional ecosystem services. On the one hand, it has strengthened the synergistic relationships among carbon sequestration, soil conservation and habitat quality; on the other hand, it has increased the constraints of water resources on soil conservation and vegetation restoration. (4) The decision risk coefficient α = 1.6 was the most suitable scenario, the total amount of regional ecosystem services was high, and the allocation was balanced under this scenario. The ecological security area corresponding to this scenario was also the area with high carbon sequestration and habitat quality services. The purpose of this study was to provide a scientific reference for the precise implementation of the GTGP.


2019 ◽  
Vol 27 (2) ◽  
pp. 166-184 ◽  
Author(s):  
Maitane Erdozain ◽  
Erika C. Freeman ◽  
Camille Ouellet Dallaire ◽  
Sonja Teichert ◽  
Harry W. Nelson ◽  
...  

The Canadian boreal zone provides extractive goods and services (provisioning ecosystem services (PrES)) to domestic and global markets and makes a significant contribution to the Canadian economy. The intensity and location of these extractive activities, however, may positively or negatively affect the availability of other benefits that the Canadian and global society receive from the boreal. Where PrES compete, managing these activities along with their impacts to boreal ecosystems becomes a balancing act between the need for resource extraction and the continued availability of the other benefits from ecosystems. Management measures and policies are more likely to succeed if they are designed with foresight, which means accounting for how demand, a key driver of change in the boreal, may change in the future. To help this process, we present three divergent, yet plausible future scenarios based on the analysis of: (i) the capacity of the boreal to provide wood products, fossil fuels, metals and minerals, and hydropower and other renewables; (ii) past trends (1985–2015) and key events in the demand for these PrES; (iii) the interaction of demand for PrES with other drivers of change to the boreal zone; and (iv) the synergies and trade-offs between PrES. We find that historically and currently the capacity of the boreal to provide these PrES exceeds the amount currently supplied. However, the capacity of different PrES and location of extractive activities are spatially dispersed creating a spatial and temporal patchwork of associated risks to local ecosystem integrity and the supply of non-PrES. In addition, these scenarios suggest that the future of boreal PrES is very uncertain and highly dependent on how other drivers of change (namely governance and geopolitics, societal values and climate change) play out in the future. Given the spatial complexity, we find that the cumulative effect of these drivers (e.g., climate change) will determine what paths unfold for different areas of the boreal, and we conclude that careful consideration and planning must be given to ensure that the balance between PrES and non-PrES is maintained.


AMBIO ◽  
2020 ◽  
Vol 49 (12) ◽  
pp. 1878-1896 ◽  
Author(s):  
Dalia D’Amato ◽  
Bartosz Bartkowski ◽  
Nils Droste

Abstract The bioeconomy is currently being globally promoted as a sustainability avenue involving several societal actors. While the bioeconomy is broadly about the substitution of fossil resources with bio-based ones, three main (competing or complementary) bioeconomy visions are emerging in scientific literature: resource, biotechnology, and agroecology. The implementation of one or more of these visions into strategies implies changes to land use and thus ecosystem services delivery, with notable trade-offs. This review aims to explore the interdisciplinary space at the interface of these two concepts. We reviewed scientific publications explicitly referring to bioeconomy and ecosystem services in their title, abstract, or keywords, with 45 documents identified as relevant. The literature appeared to be emerging and fragmented but eight themes were discernible (in order of decreasing occurrence frequency in the literature): a. technical and economic feasibility of biomass extraction and use; b. potential and challenges of the bioeconomy; c. frameworks and tools; d. sustainability of bio-based processes, products, and services; e. environmental sustainability of the bioeconomy; f. governance of the bioeconomy; g. biosecurity; h. bioremediation. Approximately half of the documents aligned to a resource vision of the bioeconomy, with emphasis on biomass production. Agroecology and biotechnology visions were less frequently found, but multiple visions generally tended to occur in each document. The discussion highlights gaps in the current research on the topic and argues for communication between the ecosystem services and bioeconomy communities to forward both research areas in the context of sustainability science.


Forests ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 584 ◽  
Author(s):  
Zuzheng Li ◽  
Xiaoqin Cheng ◽  
Hairong Han

Ecosystem services (ES), defined as benefits provided by the ecosystem to society, are essential to human well-being. However, it remains unclear how they will be affected by land-use changes due to lack of knowledge and data gaps. Therefore, understanding the response mechanism of ecosystem services to land-use change is critical for developing systematic and sound land planning. In this study, we aimed to explore the impacts of land-use change on the three ecosystem services, carbon storage (CS), flood regulation (FR), and soil conservation (SC), in the ecological conservation area of Beijing, China. We first projected land-use changes from 2015 to 2030, under three scenarios, i.e., Business as Usual (BAU), Ecological Land Protection (ELP), and Rapid Economic Development (RED), by interactively integrating the Markov model (Quantitative simulation) with the GeoSOS-FLUS model (Spatial arrangement), and then quantified the three ecosystem services by using a spatially explicit InVEST model. The results showed that built-up land would have the most remarkable growth during 2015–2030 under the RED scenario (2.52% increase) at the expense of cultivated and water body, while forest land is predicted to increase by 152.38 km2 (1.36% increase) under the ELP scenario. The ELP scenario would have the highest amount of carbon storage, flood regulation, and soil conservation, due to the strict protection policy on ecological land. The RED scenario, in which a certain amount of cultivated land, water body, and forest land is converted to built-up land, promotes soil conservation but triggers greater loss of carbon storage and flood regulation capacity. The conversion between land-use types will affect trade-offs and synergies among ecosystem services, in which carbon storage would show significant positive correlation with soil conservation through the period of 2015 to 2030, under all scenarios. Together, our results provide a quantitative scientific report that policymakers and land managers can use to identify and prioritize the best practices to sustain ecosystem services, by balancing the trade-offs among services.


2020 ◽  
Author(s):  
Robert Hill ◽  
Natalia Salazar ◽  
Adel Shirmohammadi

&lt;p&gt;Climate change is projected to affect the atmospheric variables that control crop production in the Eastern United States (US). Given that changes in these variables over the next decades are currently unavoidable, crop production will need to adapt to the expected changes in order to prevent or reduce yield losses. The main objectives of this study were: 1) to evaluate the effects of climate change on yields in rainfed corn (Zea mays L.)-soybean (Glycine max (L.) Merr.) rotation systems in the Eastern US and 2) to test two soil conservation practices&amp;#8212;no tillage and winter cover cropping with rye (Secale cereale L.)&amp;#8212;for their effectiveness as climate change adaptations in these systems. We used the Agricultural Policy/Environmental eXtender (APEX) model to simulate corn-soybean rotation systems in the future (2041&amp;#8210;2070) at nine land grant university research farms located throughout the Eastern US corn-soybean production belt from New York to Georgia. The simulated effects of climate change on yields varied depending on the climate model used, ranging from decreases to increases. Mean corn yields experienced decreases of 15&amp;#8210;51% and increases of 14&amp;#8210;85% while mean soybean yields experienced decreases of 7.6&amp;#8210;13% and increases of 22&amp;#8210;170%. Yield decreases were most common under the climate model predicting the highest increase in temperature and a reduction in precipitation, whereas yield increases were most common in the climate models predicting either a relatively small increase in temperature or a relatively large increase in precipitation. In many cases, the effects of climate change on yields worsened with time within the 30-year future period. The effects of climate change differed between the northern, central, and southern regions of the Eastern US, generally improving with latitude. Climate change generally affected corn yields more negatively or less positively than it did soybean yields. No tillage and rye cover cropping did not serve as effective climate change adaptations in regards to corn or soybean yields. In fact, planting rye after corn and soybeans reduced mean corn yields by 3.1&amp;#8210;28% relative to the control (no cover crop). We speculate that this yield decrease occurred because the rye cover crop reduced the amount of soil water available to the following corn crop.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document