Persistence of melt-bearing Archean lower crust for >200 m.y.— An example from the Lewisian Complex, northwest Scotland

Author(s):  
Tim Johnson ◽  
Rich Taylor ◽  
Chris Clark

<p><strong>Geochronological data in zircon from Archaean tonalite–trondhjemite–tonalite (TTG) gneisses is commonly difficult to interpret. A notable example are TTG gneisses from the Lewisian Gneiss Complex (LGC), northwest Scotland, which have metamorphic zircon ages that define a more-or-less continuous spread through the Neoarchaean, with no clear relationship to zircon textures. These data are generally interpreted to record discrete high-grade events at c. 2.7 Ga and c. 2.5 Ga, with intermediate ages reflecting variable Pb-loss. Although ancient diffusion of Pb is commonly invoked to explain such protracted age spreads, trace element data in zircon may permit identification of otherwise cryptic magmatic and metamorphic episodes. Although zircons from the TTG gneiss analyzed here show a characteristic spread of Neoarchaean ages, they exhibit subtle but key step changes in trace element compositions that are difficult to ascribe to diffusive resetting, but which are consistent with emplacement of regionally-extensive bodies of mafic magma. These data suggest suprasolidus metamorphic temperatures persisted for 200 Myr or more during the Neoarchaean. Such long-lived high-grade metamorphism is supported by data from zircon grains from a nearby monzogranite sheet. These preserve distinctive trace element compositions suggesting derivation from a mafic source, and define a well-constrained U–Pb zircon age of c. 2.6 Ga that is intermediate between the two previously proposed discrete metamorphic episodes. The persistence for hundreds of millions of years of melt-bearing lower crust was probably the norm during the Archaean.</strong></p>

Geology ◽  
2019 ◽  
Vol 48 (3) ◽  
pp. 221-225 ◽  
Author(s):  
Richard J.M. Taylor ◽  
Tim E. Johnson ◽  
Chris Clark ◽  
Richard J. Harrison

Abstract Geochronological data from zircon in Archean tonalite–trondhjemite–granodiorite (TTG) gneisses are commonly difficult to interpret. A notable example is the TTG gneisses from the Lewisian Gneiss Complex, northwest Scotland, which have metamorphic zircon ages that define a more-or-less continuous spread through the Neoarchean, with no clear relationship to zircon textures. These data are generally interpreted to record discrete high-grade events at ca. 2.7 Ga and ca. 2.5 Ga, with intermediate ages reflecting variable Pb loss. Although ancient diffusion of Pb is commonly invoked to explain such protracted age spreads, trace-element data in zircon may permit identification of otherwise cryptic magmatic and metamorphic episodes. Although zircons from the TTG gneiss analyzed here show a characteristic spread of Neoarchean ages, they exhibit subtle but key step changes in trace-element compositions that are difficult to ascribe to diffusive resetting, but that are consistent with emplacement of regionally extensive bodies of mafic magma. These data suggest suprasolidus metamorphic temperatures persisted for 200 m.y. or more during the Neoarchean. Such long-lived high-grade metamorphism is supported by data from zircon grains from a nearby monzogranite sheet. These preserve distinctive trace-element compositions consistent with derivation from a mafic source, and they define a well-constrained U-Pb zircon age of ca. 2.6 Ga that is intermediate between the two previously proposed discrete metamorphic episodes. The persistence of melt-bearing lower crust for hundreds of millions of years was probably the norm during the Archean.


1994 ◽  
Vol 162 ◽  
pp. 129-133
Author(s):  
A.P Nutman ◽  
F Kalsbeek

SHRIMP U-Pb isotope data on zircon crystals from a gneiss sample near Danmarkshavn, where the presence of Archaean rocks has earlier been documented, show that the rock has undergone a complex history of igneous and metamorphic zircon growth. At least three generations of zircon are present with ages of c. 3000 Ma, c. 2725 Ma and 1967 ±8 Ma (2 α). Apparently the rock was formed from an Archaean protolith which underwent high grade metamorphism during the early Proterozoic. Another sample from the easternmost exposures of the Caledonian basement, collected further north, yielded only early Proterozoic zircons with an age of 1963 ± 6 Ma. Together with a SHRIMP U-Pb zircon age of 1974 ± 17 Ma reported earlier, these results give evidence of a major igneous and metamorphic event in North-East Greenland about 1965 Ma ago.


2020 ◽  
Vol 351 ◽  
pp. 105970
Author(s):  
J. Elis Hoffmann ◽  
Emmanuel Musese ◽  
Alfred Kröner ◽  
Kathrin P. Schneider ◽  
Jean Wong ◽  
...  

1987 ◽  
Vol 51 (361) ◽  
pp. 345-355 ◽  
Author(s):  
H. R. Rollinson

AbstractAmphibolite blocks from an Archaean (2.9 Ga) trondhjemite-agmatite complex in the Lewisian at Gruinard Bay have a varied trace element and REE content. Whilst some of the variability is attributable to element mobility during high-grade metamorphism and subsequent trondhjemite magmatism, it is for the main part considered to be a primary feature of the amphibolites. The observed trace element and REE chemistry is best explained in terms of source region heterogeneity and suggests a melting regime comparable with that beneath certain types of mid-ocean ridge. There are geochemical similarities between the amphibolites and the Lewisian layered gabbro-ultramafic complexes, and the two may represent the derivative liquid and associated cumulates respectively from a common parent magma. Thus there is a parallel between the processes which generated some Archaean amphibolites and layered gabbro complexes and those operating beneath modern ocean ridges. Hornblendite and amphibolite pods enclosed within tonalitic gneiss, also found as blocks in the agmatite complex, are geochemically distinct from the main group of amphibolites and are probably of calc-alkaline parentage.


1973 ◽  
Vol 110 (4) ◽  
pp. 365-371 ◽  
Author(s):  
A. Choudhuri

SummaryThe northern part of the Guiana Shield consists of large tracts of basic and intermediate volcanic rocks and sediments which are thought to have formed under geosynclinal conditions. During the 2000 m.y. Trans-Amazonian Orogeny these rocks were subjected to tectonism and metamorphism resulting in a broad belt of green schist facies with local and isolated patches of high grade metamorphic rocks and gneiss complexes. In the early stages of orogeny during which folding and probable block faulting of the sediments and volcanics took place, these rocks were intruded by basic and ultra-basic rocks giving rise to metagabbro-amphibolite-peridotite associations, commonly in the areas of subsequent high-grade metamorphism. In an attempt to account for the frequent supply of basic magma during and after the orogeny it is postulated that mantle peridotites rose diapir-like below the sinking geosyncline, and by partial melting not only provided basic magmas but also thermal energy which spread upwards to metamorphose the already tectonized crustal rocks; recent gravity measurements indicate an upwarped ‘sima’ under the Bartica Assemblage gneiss complex.


1993 ◽  
Vol 5 (1) ◽  
pp. 85-102 ◽  
Author(s):  
John W. Sheraton ◽  
Robert J. Tingey ◽  
Lance P. Black ◽  
Robin L. Oliver

The Bunger Hills area of the East Antarctic Shield consists of granulite-facies felsic orthogneiss, with subordinate paragneiss and mafic granulite. The igneous precursors of granodioritic orthogneiss were emplaced 1500-1700 Ma ago, and late Archaean (2640 Ma) tonalitic orthogneiss occurs in the nearby Obruchev Hills. Peak metamorphism (M1) (at about 750-800°C and 5-6kb) occurred 1190 ±15 Ma ago (U-Pb zircon age), and was accompanied by the first of three ductile deformations (D1). Emplacement of voluminous, mainly mantle-derived plutonic rocks, ranging from gabbro, through quartz monzogabbro and quartz monzodiorite, to granite, followed between 1170 (during D3) and 1150 Ma. Intrusion of abundant dolerite dykes of four chemically distinct suites at about 1140 Ma was associated with shear zone formation, indicating at least limited uplift; all subsequent deformation was of brittle-ductile type. Alkaline mafic dykes were emplaced 500 Ma ago. Marked geochronological similarities with the Albany Mobile Belt of Western Australia suggest that high-grade metamorphism occurred during collision between the Archaean Yilgarn Craton of Australia and the East Antarctic Shield about 1200 Ma ago.


1969 ◽  
Vol 6 (1) ◽  
pp. 145-165 ◽  
Author(s):  
R. K. Lal ◽  
W. W. Moorhouse

The cordierite–gedrite rocks and associated gneisses on the north side of Fishtail Lake, Harcourt Township, Ontario, occur within the Grenville gneiss complex of the Haliburton Highlands. The investigation comprises a petrographic study, based on geologic mapping, and supplemented by new chemical analyses of gedrites, cordierites, garnets, biotites, and typical rocks. Comparison with compositional data from other metamorphic environments shows that the compositions of associated cordierite, garnet, and anthophyllite (gedrite) and garnet–cordierite–biotite have lower FeO/(MgO + FeO) ratios in high-grade regional metamorphic environments such as exemplified at Fishtail Lake than in contact metamorphic associations. The chemical composition of the rocks is characterized by high MgO and FeO and low lime and alkalies, compared with argillaceous rocks and metamorphic rocks derived from them. It is suggested that this unusual composition results from the removal of an anatectic granite fluid from the parent rock during partial melting associated with high-grade metamorphism. Pegmatites and aplites associated with the gneisses may represent a part of this granite fluid. This hypothesis is shown to be consistent with published experimental data, field observations, and the composition of the cordierite–gedrite rocks compared with hypothetical argillaceous parents.The rocks of the area were metamorphosed initially to the staurolite–almandine subfacies, as indicated by the occurrence of inclusions of staurolite in garnet. With increasing intensity of metamorphism, in the sillimanite–almandine–orthoclase subfacies, the staurolite became unstable, and apart from relicts, is now represented by garnet and sillimanite. Partial anatexis and removal of a melted fraction of granite composition took place, leading to the crystallization of cordierite–gedrite assemblages. Subsequent retrograde metamorphism altered some of the cordierite to kyanite–andalusite–chlorite and pinite. This secondary generation of kyanite and andalusite has resulted, in two samples studied, in the association of kyanite, andalusite, and sillimanite.


Sign in / Sign up

Export Citation Format

Share Document