Inference of sediment transport pathways in a gully system using the morphological method

Author(s):  
Wen Dai ◽  
Stuart N. Lane ◽  
Guoan Tang

<p>Gully erosion seriously threatens farmland and causes soil loss. Inferring sediment transport paths in a gully system is important for understanding the mechanisms of gully erosion. The morphological method successfully applied in estimating bed-material transport in both one dimension and two-dimensions in rivers, for some decades, has yet to be applied to gully erosion. Here, we infer sediment transport paths in a gully system using the morphological method. Two catchments in the Loess Plateau of China were selected as study areas. Multi-temporal high-resolution Digital Elevation Models (DEMs) were acquired using structure-from-motion multiview-stereo (SfM-MVS) photogrammetry for determining morphological changes. Then, both 1D sediment transport and 2D sediment transport paths were calculated based on morphological changes and topographic attributes. The results showed that the use of 1D treatment leads to substantial local errors in transport rate estimates, to a degree related to the number of branch gullies. The 2D application showed that a large proportion of the total transport was actually concentrated into one main channel in steep areas, the proportion of transport in branches is substantial in lower relief areas.</p>

2021 ◽  
Vol 9 (3) ◽  
pp. 245
Author(s):  
Cuiping Kuang ◽  
Xuejian Han ◽  
Jiabo Zhang ◽  
Qingping Zou ◽  
Boling Dong

Beach nourishment, a common practice to replenish an eroded beach face with filling sand, has become increasingly popular as an environmentally friendly soft engineering measure to tackle coastal erosion. In this study, three 200 m long offshore submerged sandbars were placed about 200 m from the shore in August 2017 for both coastal protection and beach nourishment at Shanhai Pass, Bohai Sea, northeastern China. A series of 21 beach profiles were collected from August 2017 to July 2018 to monitor the morphological changes of the nourished beach. Field observations of wave and tide levels were conducted for one year and tidal current for 25 h, respectively. To investigate the spatial-temporal responses of hydrodynamics, sediment transport, and morphology to the presence of three artificial submerged sandbars, a two-dimensional depth-averaged (2DH) multi-fraction sediment transport and morphological model were coupled with wave and current model and implemented over a spatially varying nested grid. The model results compare well with the field observations of hydrodynamics and morphological changes. The tidal range was around 1.0 m and the waves predominately came from the south-south-east (SSE) direction in the study area. The observed and predicted beach profiles indicate that the sandbars moved onshore and the morphology experienced drastic changes immediately after the introduction of sandbars and reached an equilibrium state in about one year. The morphological change was mainly driven by waves. Under the influences of the prevailing waves and the longshore drift toward the northeast, the coastline on the leeside of the sandbars advanced seaward by 35 m maximally while the rest adjacent coastline retreated severely by 44 m maximally within August 2017–July 2018. The model results demonstrate that the three sandbars have little effect on the tidal current but attenuate the incoming wave significantly. As a result, the medium-coarse sand of sandbars is transported onshore and the background silt is mainly transported offshore and partly in the longshore direction toward the northeast. The 2- and 5-year model simulation results further indicate that shoreline salient may form behind the sandbars and protrude offshore enough to reach the sandbars, similar to the tombolo behind the breakwater.


Ocean Science ◽  
2017 ◽  
Vol 13 (5) ◽  
pp. 673-690 ◽  
Author(s):  
Guilherme Franz ◽  
Matthias T. Delpey ◽  
David Brito ◽  
Lígia Pinto ◽  
Paulo Leitão ◽  
...  

Abstract. Coastal defence structures are often constructed to prevent beach erosion. However, poorly designed structures may cause serious erosion problems in the downdrift direction. Morphological models are useful tools to predict such impacts and assess the efficiency of defence structures for different scenarios. Nevertheless, morphological modelling is still a topic under intense research effort. The processes simulated by a morphological model depend on model complexity. For instance, undertow currents are neglected in coastal area models (2DH), which is a limitation for simulating the evolution of beach profiles for long periods. Model limitations are generally overcome by predefining invariant equilibrium profiles that are allowed to shift offshore or onshore. A more flexible approach is described in this paper, which can be generalised to 3-D models. The present work is based on the coupling of the MOHID modelling system and the SWAN wave model. The impacts of different designs of detached breakwaters and groynes were simulated in a schematic beach configuration following a 2DH approach. The results of bathymetry evolution are in agreement with the patterns found in the literature for several existing structures. The model was also tested in a 3-D test case to simulate the formation of sandbars by undertow currents. The findings of this work confirmed the applicability of the MOHID modelling system to study sediment transport and morphological changes in coastal zones under the combined action of waves and currents. The same modelling methodology was applied to a coastal zone (Costa da Caparica) located at the mouth of a mesotidal estuary (Tagus Estuary, Portugal) to evaluate the hydrodynamics and sediment transport both in calm water conditions and during events of highly energetic waves. The MOHID code is available in the GitHub repository.


2006 ◽  
Vol 67 (3) ◽  
pp. 491-502 ◽  
Author(s):  
P.L. Friend ◽  
A.F. Velegrakis ◽  
P.D. Weatherston ◽  
M.B. Collins

1976 ◽  
Vol 1 (15) ◽  
pp. 70 ◽  
Author(s):  
Richard O. Bruno ◽  
Christopher G. Gable

Analysis of longshore transport at a littoral barrier is presented. Channel Islands Harbor, California was selected as the study site because its offshore breakwater and jetties form a unique complete littoral barrier. Through repetitive surveys an accurate determination of longshore material transport in one direction was made. Measured transport rates ranged from 160,000 to 1,284,000 cubic meters per year. Utilizing visual observations of surf parameters, estimates of longshore wave thrust were computed. The range of wave thrust was 145 to 1,988 Newtons per meter. Comparison of the relation of wave thrust and longshore sediment transport is made. This study indicates that in an environment of high transport, nearly twice as much transport is predicted tinder corresponding wave thrust as that of the data summarized in the Coastal Engineering Research Center's Shore Protection Manual.


2017 ◽  
Vol 17 (5) ◽  
pp. 1325-1334 ◽  
Author(s):  
G. G. Morianou ◽  
N. N. Kourgialas ◽  
G. P. Karatzas ◽  
N. P. Nikolaidis

In the present work, a two-dimensional (2D) hydraulic model was used for the simulation of river flow and sediment transport in the downstream section of the Koiliaris River Basin in Crete, Greece, based on two different structured grids. Specifically, an important goal of the present study was the comparison of a curvilinear grid model with a rectilinear grid model. The MIKE 21C model has been developed to simulate 2D flows and morphological changes in rivers by using either an orthogonal curvilinear grid or a rectilinear grid. The MIKE 21C model comprises two parts: (a) the hydrodynamic part that is based on the Saint-Venant equations and (b) the morphological change part for the simulation of bank erosion and sediment transport. The difference between the curvilinear and the rectilinear grid is that the curvilinear grid lines follow the bank lines of the river, providing a better resolution of the flow near the boundaries. The water depth and sediment results obtained from the simulations for the two different grids were compared with field observations and a series of statistical indicators. It was concluded that the curvilinear grid model results were in better agreement with the field measurements.


1994 ◽  
Vol 21 (5) ◽  
pp. 770-777 ◽  
Author(s):  
T. J. Chandler ◽  
R. A. Kostaschuk

Predictions from 13 bed-material load sediment transport models are compared with 19 measurements of bed-material transport in Nottawasaga River, Ontario, using summary plots and geometric statistics. Model selection is based on recent engineering application and suitability for the flow and sediment conditions of the river. The models of Laursen (1958) and Yang (1979) perform best, followed by those of Ackers and White (1973). The models of Van Rijn (1984), Maddock (1976), Karim and Kennedy (1983), Brownlie (1981), and Yang (1973) have considerable data scatter. The models of Engelund and Hansen (1967) and Shen and Hung (1972) are the poorest predictors. Poor model performance is primarily due to overestimation of flow strength needed for particle entrainment and an excessively steep slope in the relations between flow strength and sediment transport. Key words: bed-material load transport models, test, Nottawasaga River.


Sign in / Sign up

Export Citation Format

Share Document