Insights into recharge processes and speleothem proxy archives from long-term monitoring networks of cave drip water hydrology

Author(s):  
Andy Baker ◽  
Pauline Treble ◽  
Andreas Hartmann ◽  
Mark Cuthbert ◽  
Monika Markowska ◽  
...  

<p>Since 2010 we have established cave drip water hydrological monitoring networks in four contrasting climate zones (Mediterranean, montane, semi-arid and sub-tropical) across continental Australia. Deploying over one hundred automated drip loggers, we combine these long-term monitoring datasets with climate and water isotope data, lidar mapping, electrical resistivity imaging and karst hydrological modelling to provide insights into recharge processes and the impact of hydrological variability on speleothem proxy archives.</p><p>We identify increases in drip discharge and compare the timing of those events to antecedent climate conditions (rainfall, evapotranspiration). We find rainfall recharge thresholds vary with climate. At our montane site, recharge occurs after 13 to 31 mm rainfall events, depending on antecedent conditions. At the semi-arid site, recharge occurs after 40 mm rainfall events, and at our sub-tropical sites, recharge occurs following all instances where > 93 mm / week of precipitation occurs, with lower precipitation thresholds (down to 33 mm / week) possible depending on antecedent conditions and at sites with limited vegetation cover. We use these recharge thresholds to constrain simple soil moisture balance models to better understand soil and karst storage volumes. Combined with electrical resistivity imaging, we can relate recharge to the caves to subsurface water flow paths and karst water stores.</p><p>At our montane and Mediterranean climate sites, relatively consistent drip water isotopic composition confirms the presence of well-mixed water stores. This allows us to quantify the extent of speleothem oxygen isotope variability due to fractionation associated with changes in drip rate. We identify significant differences in long-term mean drip rates between different drip sites within a cave, and significant differences in event-based drip rate responses within a cave. Drip hydrological variability helps explain the within-cave variability of speleothem oxygen isotope composition observed at both sites, and helps identify the primary drip water oxygen isotope signal.</p><p>At our semi-arid site, drip water isotopic composition is dominated by epikarst evaporation and our drip water monitoring demonstrates that recharge events are infrequent (~1.6 per year). Using both observational and modelling data, we quantify the relative importance of evaporative fractionation in the epikarst and fractionation during calcite precipitation. Using modern speleothem samples, we demonstrate that the oxygen isotope signal in this water limited environment reflects the balance between the oxygen isotope composition of recharge and its subsequent fractionation in the soil, epikarst and cave.</p>

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Andy Baker ◽  
Andreas Hartmann ◽  
Wuhui Duan ◽  
Stuart Hankin ◽  
Laia Comas-Bru ◽  
...  

Science ◽  
2019 ◽  
Vol 365 (6452) ◽  
pp. 469-473 ◽  
Author(s):  
Nir Galili ◽  
Aldo Shemesh ◽  
Ruth Yam ◽  
Irena Brailovsky ◽  
Michal Sela-Adler ◽  
...  

The oxygen isotope composition (δ18O) of marine sedimentary rocks has increased by 10 to 15 per mil since Archean time. Interpretation of this trend is hindered by the dual control of temperature and fluid δ18O on the rocks’ isotopic composition. A new δ18O record in marine iron oxides covering the past ~2000 million years shows a similar secular rise. Iron oxide precipitation experiments reveal a weakly temperature-dependent iron oxide–water oxygen isotope fractionation, suggesting that increasing seawater δ18O over time was the primary cause of the long-term rise in δ18O values of marine precipitates. The18O enrichment may have been driven by an increase in terrestrial sediment cover, a change in the proportion of high- and low-temperature crustal alteration, or a combination of these and other factors.


Radiocarbon ◽  
2010 ◽  
Vol 52 (4) ◽  
pp. 1529-1544 ◽  
Author(s):  
J Fohlmeister ◽  
A Schröder-Ritzrau ◽  
C Spötl ◽  
S Frisia ◽  
R Miorandi ◽  
...  

14C and δ13C values of C-containing species in cave drip waters are mainly controlled by the C isotope composition of karst rock and soil air, as well as by soil carbon dynamics, in particular the amount of soil CO2 in the unsaturated soil zone and the process of calcite dissolution. Here, we investigate soil carbon dynamics by analyzing the 14C activity and δ13C values of C dissolved in cave drip water. Monthly over a 2-yr period, we collected drip water from 2 drip sites, one fast and one relatively slow, within the shallow Grotta di Ernesto Cave (NE Italy). The 14C data reveal a pronounced annual cycle. In contrast, the δ13C values do not show an annual pattern and only small interannual variability compared to the δ13C values of soil waters. The annual 14C drip-water cycle is a function of drip-rate variability, soil moisture, and ultimately hydrology.


2018 ◽  
Vol 115 (26) ◽  
pp. 6602-6607 ◽  
Author(s):  
Uri Ryb ◽  
John M. Eiler

The18O/16O of calcite fossils increased by ∼8‰ between the Cambrian and present. It has long been controversial whether this change reflects evolution in the δ18O of seawater, or a decrease in ocean temperatures, or greater extents of diagenesis of older strata. Here, we present measurements of the oxygen and ‟clumped” isotope compositions of Phanerozoic dolomites and compare these data with published oxygen isotope studies of carbonate rocks. We show that the δ18O values of dolomites and calcite fossils of similar age overlap one another, suggesting they are controlled by similar processes. Clumped isotope measurements of Cambrian to Pleistocene dolomites imply crystallization temperatures of 15–158 °C and parent waters having δ18OVSMOWvalues from −2 to +12‰. These data are consistent with dolomitization through sediment/rock reaction with seawater and diagenetically modified seawater, over timescales of 100 My, and suggest that, like dolomite, temporal variations of the calcite fossil δ18O record are largely driven by diagenetic alteration. We find no evidence that Phanerozoic seawater was significantly lower in δ18O than preglacial Cenozoic seawater. Thus, the fluxes of oxygen–isotope exchange associated with weathering and hydrothermal alteration reactions have remained stable throughout the Phanerozoic, despite major tectonic, climatic and biologic perturbations. This stability implies that a long-term feedback exists between the global rates of seafloor spreading and weathering. We note that massive dolomites have crystallized in pre-Cenozoic units at temperatures >40 °C. Since Cenozoic platforms generally have not reached such conditions, their thermal immaturity could explain their paucity of dolomites.


2005 ◽  
Vol 53 (4) ◽  
pp. 283 ◽  
Author(s):  
Russell Sinclair

The TGB Osborn Vegetation Reserve at Koonamore, South Australia, is a 390-ha exclosure in semi-arid chenopod shrubland. The area was heavily overgrazed in 1925 when it was fenced to exclude sheep. Permanent quadrats and photopoints have been maintained to the present. Feral rabbits were sometimes numerous until the mid-1970s but have since been controlled. The records represent 50 years without sheep grazing, followed by 26 years without either sheep or rabbits. Dramatic seedling establishment events have occurred since 1978 for the following species: Acacia aneura Benth., Myoporum platycarpum R.Br., Senna artemesioides subsp. coriacea Randell, S. artemesioides subsp. petiolaris Randell, Acacia burkittii Benth., Dodonaea attenuata A.Cunn., Eremophila longifolia (R.Br.) F.Muell., E. sturtii R.Br. and Maireana pyramidata (Benth.) Paul G.Wilson. However, the chenopod shrubs Atriplex vesicaria Benth. and A. stipitata Benth. increased earlier and did not respond in the same way to episodic rainfall events or rabbit control. Numbers of Alectryon oleifolius (Desf.) S.T.Reynolds and Casuarina pauper F.Muell. ex L.A.S.Johnson have remained almost unchanged, whereas Maireana sedifolia (F.Muell.) Paul G.Wilson and M. astrotricha (L.Johnson) Paul G.Wilson have shown a very gradual increase over time. The data show evidence for both episodic and gradual change among different species.


Author(s):  
Ricardo Sánchez-Murillo

This study presents a hydrogeochemical analysis of spring responses (2013-2017) in the tropical mountainous region of the Central Valley of Costa Rica. The isotopic distribution of δ18O and δ2H in rainfall resulted in a highly significant meteoric water line: δ2H = 7.93×δ18O + 10.37 (r2=0.97). Rainfall isotope composition exhibited a strong dependent seasonality. The isotopic variation (δ18O) of two springs within the Barva aquifer was simulated using the FlowPC program to determine mean transit times (MTTs). Exponential-piston and dispersion distribution functions provided the best-fit to the observed isotopic composition at Flores and Sacramento springs, respectively. MTTs corresponded to 1.23±0.03 (Sacramento) and 1.42±0.04 (Flores) years. The greater MTT was represented by a homogeneous geochemical composition at Flores, whereas the smaller MTT at Sacramento is reflected in a more variable geochemical response. The results may be used to enhance modelling efforts in central Costa Rica, whereby scarcity of long-term data limits water resources management plans.


Geology ◽  
1993 ◽  
Vol 21 (3) ◽  
pp. 281 ◽  
Author(s):  
Gerald M. Friedman ◽  
R. P. Major ◽  
R. Michael Lloyd ◽  
F. Jerry Lucia

Sign in / Sign up

Export Citation Format

Share Document