Detection of solar proton events by using radiocarbon in tree-rings

Author(s):  
Nicolas Brehm ◽  
Marcus Christl ◽  
Hans-Arno Synal ◽  
Raimund Muscheler ◽  
Florian Adolphi ◽  
...  

<p>Our Sun erratically expels large amounts of energetic particles into the interplanetary space and towards Earth, which can be observed as so-called solar proton events (SPE). A strong SPE might cause major damage to satellites and could even disrupt transformers at the ground<sup>1</sup>. This rises the questions how often strong SPEs occur. Since direct observations of SPEs are limited to the last decades, cosmogenic radionuclides can be used to detect such events further back in time. The production rate of cosmogenic nuclides, such as radiocarbon, is primarily dependent on the incoming flux of highly energetic galactic cosmic rays (GCR). Under normal conditions, the Sun’s magnetic field carried by the (low energy) solar protons shields us from (high energy) GCRs, resulting in a lower production of cosmogenic radionuclides when the Sun is active. During a SPE, however, the sudden and drastic increase of high the energy solar protons themselves may lead to an elevated production of cosmogenic radionuclides on Earth. Only recently, such sharp increases in cosmogenic nuclide production occurring within less than one year have been detected in several radionuclide records (<sup>10</sup>Be, <sup>36</sup>Cl, <sup>14</sup>C) from ice core and tree ring records, and have been attributed to SPEs<sup>2,3</sup>.</p><p>Until now, only three SPE could confidently be detected in cosmogenic radionuclide records<sup>1,4,5</sup>. The reason for this is a general lack of accurately dated and annually resolved radionuclide records and/or the strong dampening of the production signal e.g. by the carbon cycle. To find and identify such events we measured radiocarbon in tree ring records at annual resolution with accelerator mass spectrometry (AMS). In this new, accurately dated and annually resolved <sup>14</sup>C record spanning the past about 1000 yr we found several new candidates for SPEs. Their timing and amplitude in terms of cosmogenic nuclide production was characterized by using a global carbon cycle box model. Once unambiguously identified such spiked production increases recorded in the absolutely dated tree ring record have a great potential to be used as a global tool to synchronize other not well dated (climate) records with cosmogenic radionuclides (e.g. <sup>10</sup>Be, <sup>36</sup>Cl).</p><p>1              Schrijver, C. J. et al. (2012) Estimating the frequency of extremely energetic solar events, based on solar, stellar, lunar, and terrestrial records. Journal of Geophysical Research: Space Physics <strong>117</strong></p><p>2              Miyake, F., Masuda, K. & Nakamura, T. (2013) Another rapid event in the carbon-14 content of tree rings. Nature communications <strong>4</strong>, 1748</p><p>3              Mekhaldi, F. et al. (2015) Multiradionuclide evidence for the solar origin of the cosmic-ray events of ᴀᴅ 774/5 and 993/4. Nature Communications <strong>6</strong>, 8611</p><p>4              Miyake, F., Nagaya, K., Masuda, K. & Nakamura, T. A (2012) signature of cosmic-ray increase in AD 774-775 from tree rings in Japan. Nature <strong>486</strong>, 240-242</p><p>5              O'Hare, P. et al. (2019) Multiradionuclide evidence for an extreme solar proton event around 2,610 B.P. ( approximately 660 BC). Proc Natl Acad Sci U S A <strong>116</strong>, 5961-5966</p>

Radiocarbon ◽  
2016 ◽  
Vol 59 (2) ◽  
pp. 315-320 ◽  
Author(s):  
Fusa Miyake ◽  
Kimiaki Masuda ◽  
Toshio Nakamura ◽  
Katsuhiko Kimura ◽  
Masataka Hakozaki ◽  
...  

AbstractTwo radiocarbon excursions (AD 774–775 and AD 993–994) occurred due to an increase of incoming cosmic rays on a short timescale. The most plausible cause of these events is considered to be extreme solar proton events (SPE). It is possible that there are other annual 14C excursions in the past that have yet to be confirmed. In order to detect more of these events, we measured the 14C contents in bristlecone pine tree-ring samples during the periods when the rate of 14C increase in the IntCal data is large. We analyzed four periods every other year (2479–2455 BC, 4055–4031 BC, 4465–4441 BC, and 4689–4681 BC), and found no anomalous 14C excursions during these periods. This study confirms that it is important to do continuous measurements to find annual cosmic-ray events at other locations in the tree-ring record.


2021 ◽  
Author(s):  
Nicolas Brehm ◽  
Marcus Christl ◽  
Florian Adolphi ◽  
Raimund Muscheler ◽  
Hans-Arno Synal ◽  
...  

Abstract The Sun sporadically produces eruptive events leading to intense fluxes of solar energetic particles (SEPs) that dramatically disrupt the near-Earth radiation environment. Such events are directly studied for the last decades but little is known about the occurrence and magnitude of rare, extreme SEP events. Presently, a few events that produced measurable signals in cosmogenic radionuclides such as 14C, 10Be and 36Cl have been found. Analyzing annual 14C concentrations in tree-rings from Switzerland, Germany, Ireland, Russia, and the USA we discovered two spikes in atmospheric 14C corresponding to 7176 and 5259 BCE. The ~ 2% increases of atmospheric 14C recorded for both events exceed all previously known 14C peaks but after correction for the geomagnetic field, they are comparable to the largest event of this type discovered so far at 775 CE. These strong events serve as accurate time markers for the synchronization with floating tree-ring and ice core records and provide critical information on the previous occurrence of extreme solar events which threaten modern infrastructure.


2009 ◽  
Vol 73 (3) ◽  
pp. 325-327
Author(s):  
V. M. Dvornikov ◽  
M. V. Kravtsova ◽  
A. A. Lukovnikova ◽  
V. E. Sdobnov

2020 ◽  
Author(s):  
Donna Rodgers-Lee ◽  
Aline Vidotto ◽  
Andrew Taylor ◽  
Paul Rimmer ◽  
Turlough Downes

<p>Cosmic rays may have contributed to the start of life on Earth. Cosmic rays also influence and contribute to atmospheric electrical circuits, cloud cover and biological mutation rates which are important for the characterisation of exoplanetary systems. The flux of Galactic cosmic rays present at the time when life is thought to have begun on the young Earth or in other young exoplanetary systems is largely determined by the properties of the stellar wind. </p> <p>The spectrum of Galactic cosmic rays that we observe at Earth is modulated, or suppressed, by the magnetised solar wind and thus differs from the local interstellar spectrum observed by Voyager 1 and 2 outside of the solar system. Upon reaching 1au, Galactic cosmic rays subsequently interact with the Earth’s magnetosphere and some of their energy is deposited in the upper atmosphere. The properties of the solar wind, such as the magnetic field strength and velocity profile, evolve with time. Generally, young solar-type stars are very magnetically active and are therefore thought to drive stronger stellar winds. </p> <p>Here I will present our recent results which simulate the propagation of Galactic cosmic rays through the heliosphere to the location of Earth as a function of the Sun's life, from 600 Myr to 6 Gyr, in the Sun’s future. I will specifically focus on the flux of Galactic cosmic rays present at the time when life is thought to have started on Earth (~1 Gyr). I will show that the intensity of Galactic cosmic rays which reached the young Earth, by interacting with the solar wind, would have been greatly reduced in comparison to the present day intensity. I will also discuss the effect that the Sun being a slow/fast rotator would have had on the flux of cosmic rays reaching Earth at early times in the solar system's life.</p> <p>Despite the importance of Galactic cosmic rays, their chemical signature in the atmospheres’ of young Earth-like exoplanets may not be observable with instruments in the near future. On the other hand, it may instead be possible to detect their chemical signature by observing young warm Jupiters. Thus, I will also discuss the HR 2562b exoplanetary system as a candidate for observing the chemical signature of Galactic cosmic rays in a young exoplanetary atmosphere with upcoming missions such as JWST.</p>


1967 ◽  
Vol 1 (1) ◽  
pp. 11-12 ◽  
Author(s):  
S. F. Smerd

Dodson and Hedeman discovered an unexpected effect in the occurrence of solar proton events as revealed by polarcap absorption (PCA). When the 48 events in Bailey’s Catalog of the Principal PCA Events, 1952-1963 are distributed with the phase of the moon there is a gap of several days near full moon; also, many more events occur when the moon waxes than when it wanes. Dodson and Hedeman did not find similar, apparent departures from random distribution either with a mean solar rotation period of 27.3 days or for solar flare events. They concluded that ‘at the present time it is not clear whether the 29.5 day “effect” is related to the sun or the moon or is only a statistical accident’.


2021 ◽  
Author(s):  
Irina Mironova

<div> <div> <div> <p>It is well-known that energetic particle precipitations during solar proton events increase ionization rates in the middle atmosphere enhancing the production of hydrogen oxide radicals (HOx) involved in the catalytic ozone destruction cycle. There are many studies where the contribution of energetic particles to the formation of hydrogen oxide radicals and ozone loss has been widely investigated. However, until now, there was no solid evidence that the reduction in galactic cosmic ray fluxes during a magnetic storm, known as Forbush-effect, directly and noticeably affects the polar-night stratospheric chemistry.<br>Here, the impact of the Forbush decrease on the behaviour of hydrogen oxide radicals was explored using the chemistry-climate model SOCOL.<br>We found that hydrogen oxide radical lost about half of its concentration over the polar boreal night stratosphere owing to a reduction in ionization rates caused by Forbush decreases after solar proton events occurred on 17 and 20 of January 2005. A robust response in ozone was not found. There is not any statistically significant response in (NOx) on Forbush decrease events as well as over summertime in the southern polar region.<br>The results of this study can be used to increase the veracity of ozone loss estimation if stronger Forbush events can have a place.</p> <p>Reference: Mironova I, Karagodin-Doyennel A and Rozanov E (2021) , The effect of Forbush decreases on the polar-night HOx concentration affecting stratospheric ozone. Front. Earth Sci. 8:618583. doi: 10.3389/feart.2020.618583</p> <p>https://www.frontiersin.org/articles/10.3389/feart.2020.618583/full</p> <p>The study was supported by the Russian Science Foundation grant (RSF project No. 20-67-46016).</p> </div> </div> </div>


The large solar flares associated with cosmic-ray events release total bolometric energies in the region 1024-1 0 25 J. This is of the order 10~5-10~6 of the normal bolometric energy emission of the Sun. The condition of the M and K type stars when they flare is entirely different; the rate of energy release during the flare is of the same order as the normal energy release of the star in the quiescent condition. Although these dwarf stars are in a markedly different evolutionary condition compared with the Sun recent simultaneous radio and optical observations of the flares have given decisive indications that the physical processes, involving magnetic field collapse of several hundredths of a tesla, must be similar to the flare mechanism in the Sun. Adopting the factor, which has been determined empirically in the case of the Sun, for the conversion of flare energy to cosmic-ray energy, estimates are made of the fraction of galactic cosmic rays which may be generated in the flares on the M and K type stars. It is shown that these stars may be the major source of the galactic cosmic rays for energies from 106-3 x 108 eV and that the K type stars may contribute one fifth of the total cosmic-ray energy up to 109 eV.


1968 ◽  
Vol 46 (10) ◽  
pp. S812-S818 ◽  
Author(s):  
S. N. Vernov ◽  
E. V. Gortchakov ◽  
Yu. I. Logatchov ◽  
G. P. Lyubimov ◽  
N. V. Pereslegina ◽  
...  

This work studies the structure of interplanetary space between the orbits of Venus and Mars on the basis of solar proton streaming and cosmic-ray variations measured from Soviet and U.S. spacecraft. Solar proton fluxes measured from spacecraft at various distances from the sun and in various solar activity phases are intercompared. The problem of the large radial gradient of protons with energies of 1–5 MeV is discussed.


Sign in / Sign up

Export Citation Format

Share Document