Characterization of heterogeneous landfill: seismic waveform inversion and wavefield retrieval to integrated quantitative inversion of high-resolution seismic-electrical datasets

Author(s):  
Ranajit Ghose

<p>A landfill body is typically highly heterogeneous. The scale of these heterogeneities - which are relevant for the purpose of assessment of preferential flow paths, the degradation processes, and the spatio-temporally varying aging and settlements - is quite often small considering the limiting resolution and confidence of the prevalent near-surface geophysical methods. High-density areas act as obstruction to fluid flow and are important for understanding the degradation processes. These areas manifest as scatterers in the recorded seismic wavefield. Strong presence of scattered energy is typical of seismic datasets acquired on landfills. Our research has been concentrated on resolving and monitoring density and porosity variations, as well as distribution of water saturation, phreatic surface, matric suction and stress. Dedicated schemes of early-arrival waveform tomography, full-waveform inversion and interferometric seismic wavefield retrieval complemented by electrical resistivity tomography show promise in high-resolution delineation and monitoring of these properties in a heterogeneous landfill. We will discuss the results of a novel inversion scheme which allows quantitative estimation of spatio-temporally heterogeneous matric suction, stress and porosity.</p>

Geophysics ◽  
2020 ◽  
pp. 1-57
Author(s):  
Daniele Colombo ◽  
Ernesto Sandoval ◽  
Diego Rovetta ◽  
Apostolos Kontakis

Land seismic velocity modeling is a difficult task largely related to the description of the near surface complexities. Full waveform inversion is the method of choice for achieving high-resolution velocity mapping but its application to land seismic data faces difficulties related to complex physics, unknown and spatially varying source signatures, and low signal-to-noise ratio in the data. Large parameter variations occur in the near surface at various scales causing severe kinematic and dynamic distortions of the recorded wavefield. Some of the parameters can be incorporated in the inversion model while others, due to sub-resolution dimensions or unmodeled physics, need to be corrected through data preconditioning; a topic not well described for land data full waveform inversion applications. We have developed novel algorithms and workflows for surface-consistent data preconditioning utilizing the transmitted portion of the wavefield, signal-to-noise enhancement by generation of CMP-based virtual super shot gathers, and robust 1.5D Laplace-Fourier full waveform inversion. Our surface-consistent scheme solves residual kinematic corrections and amplitude anomalies via scalar compensation or deconvolution of the near surface response. Signal-to-noise enhancement is obtained through the statistical evaluation of volumetric prestack responses at the CMP position, or virtual super (shot) gathers. These are inverted via a novel 1.5D acoustic Laplace-Fourier full waveform inversion scheme using the Helmholtz wave equation and Hankel domain forward modeling. Inversion is performed with nonlinear conjugate gradients. The method is applied to a complex structure-controlled wadi area exhibiting faults, dissolution, collapse, and subsidence where the high resolution FWI velocity modeling helps clarifying the geological interpretation. The developed algorithms and automated workflows provide an effective solution for massive full waveform inversion of land seismic data that can be embedded in typical near surface velocity analysis procedures.


2019 ◽  
Vol 59 (1) ◽  
pp. 432
Author(s):  
Tony Martin ◽  
Andrew Long

Despite the mathematics behind full waveform inversion (FWI) being published in the early 1980s, it was 30 years before the method could be efficiently implemented on the scale of conventional 3D marine seismic volumes. FWI has evolved from using only transmitted waves and being constrained because towed streamer data lacked the very long offsets and ultra-low frequencies necessary to derive stable velocity updates beyond shallow depths. FWI now uses the full seismic wavefield (both transmitted and scattered wavefields), recovers deep velocity updates for standard offsets and frequencies and increasingly uses a wider range of frequencies that contribute to seismic imaging. We use several case examples to consider the benefits and caveats for robust FWI application: for resolving near-surface features and reducing seismic imaging uncertainty in areas with complex overburden heterogeneities; for resolving near-surface features and improving volumetric estimates; for using an enlarged bandwidth to resolve small model features; for updating the velocity in high contrast regimes; and for the creation of survey-wide, high-resolution models to reduce imaging uncertainty, complement attribute analysis, estimate elastic properties and prospect derisking. Collectively, we demonstrate how to produce high-resolution velocity models when conventional methods cannot and how to generate earth models in an accelerated fashion to reduce project turnaround. We describe pragmatic limits to what maximum FWI frequencies are reasonable and suggest ways that may soon by-pass signal processing and obtain direct earth attributes.


2017 ◽  
Vol 5 (4) ◽  
pp. SR23-SR33 ◽  
Author(s):  
Xin Cheng ◽  
Kun Jiao ◽  
Dong Sun ◽  
Zhen Xu ◽  
Denes Vigh ◽  
...  

Over the past decade, acoustic full-waveform inversion (FWI) has become one of the standard methods in the industry to construct high-resolution velocity fields from the seismic data acquired. While most of the successful applications are for marine acquisition data with rich low-frequency diving or postcritical waves at large offsets, the application of acoustic FWI on land data remains a challenging topic. Land acoustic FWI application faces many severe difficulties, such as the presence of strong elastic effects, large near-surface velocity contrast, and heterogeneous, topography variations, etc. In addition, it is well-known that low-frequency transmitted seismic energy is crucial for the success of FWI to overcome sensitivity to starting velocity fields; unfortunately, those are the parts of the data that suffer the most from a low signal-to-noise ratio (S/N) in land acquisition. We have developed an acoustic FWI application on a land data set from North Kuwait, and demonstrated our solutions to mitigate some of the challenges posed by land data. More specifically, we have developed a semblance-based high-resolution Radon (HR-Radon) inversion approach to enhance the S/N of the low-frequency part of the FWI input data and to ultimately improve the convergence of the land FWI workflow. To mitigate the impact of elastic effects, we included only the diving and postcritical early arrivals in the waveform inversion. Our results show that, with the aid of HR-Radon preconditioning and a carefully designed workflow, acoustic FWI has the ability to derive a reliable high-resolution near-surface model that could not be otherwise recovered through traditional tomographic methods.


2018 ◽  
Vol 40 (3) ◽  
pp. 1080
Author(s):  
B. Di Fiore ◽  
D. Chianese ◽  
A. Loperte ◽  
G. Conte ◽  
A. Dibenedetto ◽  
...  

High resolution techniques for data acquisition and processing procedures are increasingly applied in near-surface geophysics for archaeology. In this paper we present the preliminary results of two geophysical measurements campaigns aimed to the investigation of buried remains in the archaeological sites of Θουρία (Péloponnèse, Hellas) and Sibari (Southern Italy). In the first field survey the geophysical approach involved the integrated application of the geoelectrical and magnetic methods and an innovative tomographic analysis for the inversion of both resistivity and magnetic data. In the second case, we carried out high resolution magnetic measurements, interpreted by means of the use of an appropriate filtering procedure. The applied data inversion allows us to provide reliable space patterns of the most probable specific target boundaries, improving the information quality of geophysical methods. The results obtained at this early stage of data processing confirm some archaeological hypothesis about the investigated areas and confirm that the use of integrated geophysical methods allows the archaeologists to reduce the time and the costs of their surveys.


Geophysics ◽  
2014 ◽  
Vol 79 (1) ◽  
pp. B1-B18 ◽  
Author(s):  
François Bretaudeau ◽  
Céline Gélis ◽  
Donatienne Leparoux ◽  
Romain Brossier ◽  
Justo Cabrera ◽  
...  

Imaging tectonic faults with small vertical offsets in argillites (clay rock) using geophysical methods is challenging. In the context of deep radioactive waste disposals, the presence of such faults has to be assessed because they can modify the rock-confining properties. In the Tournemire Experimental Platform (TEP, Aveyron, France), fault zones with small vertical offsets and complex shape have been identified from underground works. However, 3D high-resolution surface seismic methods have limitations in this context that led us to consider the detection and characterization of the faults directly from underground works. We investigated the potential of seismic full-waveform inversion (FWI) applied in a transmission configuration to image the clay rock medium in a horizontal plane between galleries and compared it with first-arrival traveltime tomography (FATT). Our objective was to characterize seismic velocities of a block of argillites crossed by a subvertical fault zone with a small vertical offset. The specific measurement configuration allowed us to neglect the influence of the galleries on the wave propagation and to simplify the problem by considering a 2D isotropic horizontal imaging domain. Our FWI scheme relied on a robust adaptation of early arrival waveform tomography. The results obtained with FATT and FWI were in accordance, and both correlated with the geologic observations from the gallery walls and boreholes. We found that even though various simplifications was done in the inversion scheme and only a part of the data was used, FWI allowed us to get higher resolution images than FATT, and it was especially less sensitive to the incomplete illumination because it also used diffracted energy. Our results highlighted the complexity of the fault zone, showing a complex interaction of the main fault system with a secondary system composed of decimetric fractures associated with the presence of water.


2008 ◽  
Vol 87 (2) ◽  
pp. 151-164 ◽  
Author(s):  
T. Missiaen ◽  
E. Slob ◽  
M.E. Donselaar

AbstractIn order to validate existing models of sedimentation in active sedimentary environments, detailed stratigraphic information is indispensable. Near-surface geophysical methods provide a means to acquire high-resolution images of the stratigraphic succession in the shallow subsurface. Land-based and marine methods have been tested in the Verdronken Land van Saeftinge. This intertidal flat area is cut by numerous tidal gullies, and high tidal amplitudes enable the application of different techniques at various water levels. Data acquisition focused on the upper 10 – 20 m of the active sediment bodies. Applied techniques include high-resolution seismic acquisition, geo-electrical methods (DC resistivity), electromagnetic techniques, CPT, and manual drilling. In general the acoustic methods allowed more reliable and detailed interpretation of the sedimentary structures than the electric/electromagnetic methods. The latter suffered from the effect of tidal action and salt-water intrusion, and their application on land proved very strenuous. CPT and shallow cores provided valuable ground-truth information. The results clearly indicate that no single technique can provide all the answers. Only an integrated use of (complementary) methods will allow getting a better grip on the sedimentary architecture and preservation potential in active estuarine sedimentary environments.


Sign in / Sign up

Export Citation Format

Share Document