Multi-objective calibration of a distributed eco-hydrological model using several remotely sensed information

Author(s):  
Félix Francés ◽  
Carlos Echeverría ◽  
Maria Gonzalez-Sanchis ◽  
Fernando Rivas

<p>Calibration of eco-hydrological models is difficult to carry on, even more if observed data sets are scarce. It is known that calibration using traditional trial-and-error approach depends strongly of the knowledge and the subjectivity of the hydrologist, and automatic calibration has a strong dependency of the objective-function and the initial values established to initialize the process.</p><p>The traditional calibration approach mainly focuses on the temporal variation of the discharge at the catchment outlet point, representing an integrated catchment response and provides thus only limited insight on the lumped behaviour of the catchment. It has been long demonstrated the limited capabilities of such an approach when models are validated at interior points of a river basin. The development of distributed eco-hydrological models and the burst of spatio-temporal data provided by remote sensing appear as key alternative to overcome those limitations. Indeed, remote sensing imagery provides not only temporal information but also valuable information on spatial patterns, which can facilitate a spatial-pattern-oriented model calibration.</p><p>However, there is still a lack of how to effectively handle spatio-temporal data when included in model calibration and how to evaluate the accuracy of the simulated spatial patterns. Moreover, it is still unclear whether including spatio-temporal data improves model performance in face to an unavoidable more complex and time-demanding calibration procedure. To elucidate in this sense, we performed three different multiobjective calibration configurations: (1) including only temporal information of discharges at the catchment outlet (2) including both temporal and spatio-temporal information and (3) only including spatio-temporal information. In the three approaches, we calibrated the same distributed eco-hydrological model (TETIS) in the same study area: Carraixet Basin, and used the same multi-objective algorithm: MOSCEM-UA. The spatio-temporal information obtained from satellite has been the surface soil moisture (from SMOS-BEC) and the leaf area index (from MODIS).</p><p>Even though the performance of the first calibration approach (only temporal information included) was slightly better than the others, all calibration approaches provided satisfactory and similar results within the calibration period. To put these results into test, we also validated the model performance by using historical data that was not used to calibrate the model (validation period). Within the validation period, the second calibration approach obtained better performance than the others, pointing out the higher reliability of the obtained parameter values when including spatio-temporal data (in this case, in combination with temporal data) in the model calibration. It is also reliable to mention that the approaches considering only spatio-temporal information provided interesting results in terms of discharges, considering that this variable was not used at all for calibration purposes.</p>

Author(s):  
Raksmey Ang ◽  
S. Shrestha ◽  
Salvatore Virdis ◽  
Saurav KC

This study analyses the efficiency of integrating remotely sensed evapotranspiration into the process of hydrological model calibration. A joint calibration approach, employing both remote sensing-derived evapotranspiration and ground-monitored streamflow data was compared with a conventional ground-monitored streamflow calibration approach through physically-based hydrological, Soil and Water Assessment Tool (SWAT) model setups. The efficacy of the two calibration schemes was investigated in two modelling setups: 1) a physically-based model with only the outlet gauge available for calibration, and 2) a physically-based model with multiple gauges available for calibration. Joint calibration was found to enhance the skill of hydrological models in streamflow simulation compared to ground-monitored streamflow-only calibration at the unsaturated zone in the upstream area, where essential information on evapotranspiration is also required. Additionally, the use of remote sensing-derived evapotranspiration can significantly improve high flow compared to low flow simulation. A more consistent model performance improvement, obtained from using remote sensing-derived evapotranspiration data was found at gauged sites not used in the calibration, due to additional information on spatial evapotranspiration in internal locations being enhanced into a process-based model. Eventually, satellite-based evapotranspiration with fine resolution was found to be competent for calibrating and validating the hydrological model for streamflow simulation in the absence of measured streamflow data for model calibration. Furthermore, the impact of using evapotranspiration for hydrologic model calibration tended to be stronger at the upstream and tributary sub-basins than at downstream sub-basins.


2013 ◽  
Vol 405-408 ◽  
pp. 2222-2225
Author(s):  
Qian Li ◽  
Wei Min Bao ◽  
Jing Lin Qian

This paper discusses the conceptual stepped calibration approach (SCA) which has been developed for the Xinanjiang (XAJ) model. Multi-layer and multi-objective functions which can make optimization work simpler and more effective are introduced in this procedure. In all eight parameters were considered, they were divided into four layers according to the structure of XAJ model, and then calibrated layer by layer. The SCA procedure tends to improve the performance of the traditional method of calibration (thus, using a single objective function, such as root mean square error RMSE). The compared results demonstrate that the SCA yield better model performance than RMSE.


2021 ◽  
Author(s):  
Markus Hrachowitz ◽  
Petra Hulsman ◽  
Hubert Savenije

<p>Hydrological models are often calibrated with respect to flow observations at the basin outlet. As a result, flow predictions may seem reliable but this is not necessarily the case for the spatiotemporal variability of system-internal processes, especially in large river basins. Satellite observations contain valuable information not only for poorly gauged basins with limited ground observations and spatiotemporal model calibration, but also for stepwise model development. This study explored the value of satellite observations to improve our understanding of hydrological processes through stepwise model structure adaption and to calibrate models both temporally and spatially. More specifically, satellite-based evaporation and total water storage anomaly observations were used to diagnose model deficiencies and to subsequently improve the hydrological model structure and the selection of feasible parameter sets. A distributed, process based hydrological model was developed for the Luangwa river basin in Zambia and calibrated with respect to discharge as benchmark. This model was modified stepwise by testing five alternative hypotheses related to the process of upwelling groundwater in wetlands, which was assumed to be negligible in the benchmark model, and the spatial discretization of the groundwater reservoir. Each model hypothesis was calibrated with respect to 1) discharge and 2) multiple variables simultaneously including discharge and the spatiotemporal variability in the evaporation and total water storage anomalies. The benchmark model calibrated with respect to discharge reproduced this variable well, as also the basin-averaged evaporation and total water storage anomalies. However, the evaporation in wetland dominated areas and the spatial variability in the evaporation and total water storage anomalies were poorly modelled. The model improved the most when introducing upwelling groundwater flow from a distributed groundwater reservoir and calibrating it with respect to multiple variables simultaneously. This study showed satellite-based evaporation and total water storage anomaly observations provide valuable information for improved understanding of hydrological processes through stepwise model development and spatiotemporal model calibration.</p>


2018 ◽  
Vol 22 (8) ◽  
pp. 4593-4604 ◽  
Author(s):  
Yongqiang Zhang ◽  
David Post

Abstract. Gap-filling streamflow data is a critical step for most hydrological studies, such as streamflow trend, flood, and drought analysis and hydrological response variable estimates and predictions. However, there is a lack of quantitative evaluation of the gap-filled data accuracy in most hydrological studies. Here we show that when the missing data rate is less than 10 %, the gap-filled streamflow data obtained using calibrated hydrological models perform almost the same as the benchmark data (less than 1 % missing) when estimating annual trends for 217 unregulated catchments widely spread across Australia. Furthermore, the relative streamflow trend bias caused by the gap filling is not very large in very dry catchments where the hydrological model calibration is normally poor. Our results clearly demonstrate that the gap filling using hydrological modelling has little impact on the estimation of annual streamflow and its trends.


2017 ◽  
Author(s):  
Gorka Mendiguren ◽  
Julian Koch ◽  
Simon Stisen

Abstract. Distributed hydrological models are traditionally evaluated against discharge stations, emphasizing the temporal and neglecting the spatial component of a model. The present study widens the traditional paradigm by highlighting spatial patterns of evapotranspiration (ET), a key variable at the land-atmosphere interface, obtained from two different approaches at the national scale of Denmark. The first approach is based on a national water resources model (DK-model), using the MIKE-SHE model code, and the second approach utilizes a two source energy balance model (TSEB) driven mainly by satellite remote sensing data. The main hypothesis of the study is that while both approaches are essentially estimates, the spatial patterns of the remote sensing based approach are explicitly driven by observed land surface temperature and therefore represent the most direct spatial pattern information of ET; enabling its use for distributed hydrological model evaluation. Ideally the hydrological model simulation and remote sensing based approach should present similar spatial patterns and driving mechanism of ET. However, the spatial comparison showed that the differences are significant and indicating insufficient spatial pattern performance of the hydrological model. The differences in spatial patterns can partly be explained by the fact that the hydrological model is configured to run in 6 domains that are calibrated independently from each other, as it is often the case for large scale multi-basin calibrations. Furthermore, the model incorporates predefined temporal dynamics of Leaf Area Index (LAI), root depth (RD) and Crop coefficient (Kc) for each land cover type. This zonal approach of model parametrization ignores the spatio-temporal complexity of the natural system. To overcome this limitation, the study features a modified version of the DK-Model in which LAI, RD, and KC are empirically derived using remote sensing data and detailed soil property maps in order to generate a higher degree of spatio-temporal variability and spatial consistency between the 6 domains. The effects of these changes are analyzed by using the empirical orthogonal functions (EOF) analysis to evaluate spatial patterns. The EOF-analysis shows that including remote sensing derived LAI, RD and KC in the distributed hydrological model adds spatial features found in the spatial pattern of remote sensing based ET.


2008 ◽  
Vol 12 (3) ◽  
pp. 751-767 ◽  
Author(s):  
T. Vischel ◽  
G. G. S. Pegram ◽  
S. Sinclair ◽  
W. Wagner ◽  
A. Bartsch

Abstract. The paper compares two independent approaches to estimate soil moisture at the regional scale over a 4625 km2 catchment (Liebenbergsvlei, South Africa). The first estimate is derived from a physically-based hydrological model (TOPKAPI). The second estimate is derived from the scatterometer on board the European Remote Sensing satellite (ERS). Results show a good correspondence between the modelled and remotely sensed soil moisture, particularly with respect to the soil moisture dynamic, illustrated over two selected seasons of 8 months, yielding regression R2 coefficients lying between 0.68 and 0.92. Such a close similarity between these two different, independent approaches is very promising for (i) remote sensing in general (ii) the use of hydrological models to back-calculate and disaggregate the satellite soil moisture estimate and (iii) for hydrological models to assimilate the remotely sensed soil moisture.


2018 ◽  
Vol 22 (1) ◽  
pp. 331-350 ◽  
Author(s):  
Abdellah Ichiba ◽  
Auguste Gires ◽  
Ioulia Tchiguirinskaia ◽  
Daniel Schertzer ◽  
Philippe Bompard ◽  
...  

Abstract. Hydrological models are extensively used in urban water management, development and evaluation of future scenarios and research activities. There is a growing interest in the development of fully distributed and grid-based models. However, some complex questions related to scale effects are not yet fully understood and still remain open issues in urban hydrology. In this paper we propose a two-step investigation framework to illustrate the extent of scale effects in urban hydrology. First, fractal tools are used to highlight the scale dependence observed within distributed data input into urban hydrological models. Then an intensive multi-scale modelling work is carried out to understand scale effects on hydrological model performance. Investigations are conducted using a fully distributed and physically based model, Multi-Hydro, developed at Ecole des Ponts ParisTech. The model is implemented at 17 spatial resolutions ranging from 100 to 5 m. Results clearly exhibit scale effect challenges in urban hydrology modelling. The applicability of fractal concepts highlights the scale dependence observed within distributed data. Patterns of geophysical data change when the size of the observation pixel changes. The multi-scale modelling investigation confirms scale effects on hydrological model performance. Results are analysed over three ranges of scales identified in the fractal analysis and confirmed through modelling. This work also discusses some remaining issues in urban hydrology modelling related to the availability of high-quality data at high resolutions, and model numerical instabilities as well as the computation time requirements. The main findings of this paper enable a replacement of traditional methods of “model calibration” by innovative methods of “model resolution alteration” based on the spatial data variability and scaling of flows in urban hydrology.


2013 ◽  
Vol 765-767 ◽  
pp. 3061-3065
Author(s):  
Chong Wei ◽  
Jie Chen ◽  
Xuan Song

The hydrological model is a tool to simulate the hydrological processes and to solve the practical problem. The composition and spatial configuration of landscape often result in variation of hydrological conditions. This study is applied to compare the results of SWAT model with different land use maps in Qihe watershed, and shows that the sensitivity of SWAT model to landscape spatial configurations at landscape level is weak, except the landscape composition. After model calibration, both models satisfy the observed data well, which means though the land use map beyond the real landscape spatial configurations, the SWAT model could also describe the water yield of Qihe watershed accurately during the validation period.


Sign in / Sign up

Export Citation Format

Share Document