MJO-Induced Variability of the Diurnal Cycle of Precipitation over the Maritime Continent

Author(s):  
Ajda Savarin ◽  
Shuyi Chen

<p>Large-scale convection associated with the Madden-Julian Oscillation (MJO) initiates over the Indian Ocean and propagates eastward across the Maritime Continent (MC) into the western Pacific. As an MJO enters the MC, it often weakens or completely dissipates due to complex interactions between the large-scale MJO and the MC landmass and its topography. This is referred to as the MC barrier effect, and it is responsible for the dissipation of 40-50% of observed MJO events. One of the main reasons for the MJO’s weakening and dissipation over the MC is the diurnal cycle (DC), one of the strongest modes of variability in the region. Due to the complex nature of the MJO and the MC’s complicated topography, the interaction between the DC and the MJO is not well understood.</p><p>In this study, we examine the MJO-induced variability of the DC of precipitation over the MC. We use gridded satellite precipitation products (TRMM 3B42 and GPM IMERG) to: (1) track the MJO convective envelope using the Large-scale Precipitation Tracking algorithm (LPT), (2) analyze the changes in the DC of precipitation over the MC relative to the passage of the MJO. We find that the presence of an MJO not only increases the amount of precipitation over the MC, but that the increase is more pronounced over water than over land. The results from observations are compared to those from two reanalysis datasets (ERA5, MERRA-2). The reanalysis datasets are then used to examine the dynamic and thermodynamic changes that drive the variability in the DC of precipitation relative to the MJO. In addition, we separate MJO events into two groups based on whether they cross the MC, and independently examine their influences on the evolution of the DC of precipitation.</p>

2020 ◽  
Vol 33 (15) ◽  
pp. 6689-6705
Author(s):  
David Coppin ◽  
Gilles Bellon ◽  
Alexander Pletzer ◽  
Chris Scott

AbstractWe propose an algorithm to detect and track coastal precipitation systems and we apply it to 18 years of the high-resolution (8 km and 30 min) Climate Prediction Center CMORPH precipitation estimates in the tropics. Coastal precipitation in the Maritime Continent and Central America contributes to up to 80% of the total rainfall. It also contributes strongly to the diurnal cycle over land with the largest contribution from systems lasting between 6 and 12 h and contributions from longer-lived systems peaking later in the day. While the diurnal cycle of coastal precipitation is more intense over land in the summer hemisphere, its timing is independent of seasons over both land and ocean because the relative contributions from systems of different lifespans are insensitive to the seasonal cycle. We investigate the hypothesis that coastal precipitation is enhanced prior to the arrival of the Madden–Julian oscillation (MJO) envelope over the Maritime Continent. Our results support this hypothesis and show that, when considering only coastal precipitation, the diurnal cycle appears reinforced even earlier over islands than previously reported. We discuss the respective roles of coastal and large-scale precipitation in the propagation of the MJO over the Maritime Continent. We also document a shift in diurnal cycle with the phases of the MJO, which results from changes in the relative contributions of short-lived versus long-lived coastal systems.


2018 ◽  
Vol 31 (19) ◽  
pp. 7719-7738 ◽  
Author(s):  
Guosen Chen ◽  
Bin Wang

Well-organized eastward propagation of the Madden–Julian oscillation (MJO) is found to be accompanied by the leading suppressed convection (LSC) over the Maritime Continent (MC) and the western Pacific (WP) when the MJO convection is in the Indian Ocean (IO). However, it remains unclear how the LSC influences the MJO and what causes the LSC. The present study shows that the LSC is a prevailing precursor for eastward propagation of the MJO across the MC. The LSC enhances the coupling of IO convection and the Walker cell to its east [front Walker cell (FWC)] by increasing the zonal heating gradient. The enhanced FWC strengthens the low-level easterly, which increases boundary layer (BL) convergence and promotes congestus convection to the east of the deep convection; the enhanced congestus convection preconditions the lower to middle atmosphere, which further promotes the transition from congestus to deep convection and leads to eastward propagation of the MJO. The MJO ceases eastward propagation once the FWC decouples from it. Further analysis reveals that LSC has two major origins: one comes from the eastward propagation of the preceding IO dry phase associated with the MJO, and the other develops concurrently with the IO convection. In the latter case, the development of the LSC is brought about by a two-way interaction between the MJO’s tropical heating and the associated tropical–extratropical teleconnection: the preceding IO suppressed convection induces a tropical–extratropical teleconnection, which evolves and forms an anomalous western North Pacific cyclone that generates upper-level convergence and induces significant LSC.


2018 ◽  
Vol 31 (18) ◽  
pp. 7549-7564 ◽  
Author(s):  
Tamaki Suematsu ◽  
Hiroaki Miura

An environment favorable for the development of the Madden–Julian oscillation (MJO) was investigated by classifying MJO-like atmospheric patterns as MJO and regionally confined convective (RCC) events. Comparison of MJO and RCC events showed that even when preceded by a major convective suppression event, convective events did not develop into an MJO when large-scale buildup of moist static energy (MSE) was inhibited. The difference in the MSE accumulation between MJO and RCC is related to the contrasting low-frequency basic-state sea surface temperature (SST) pattern; the MJO and RCC events were associated with anomalously warm and cold low-frequency SSTs prevailing over the western to central Pacific, respectively. Differences in the SST anomaly field were absent from the intraseasonal frequency range of 20–60 days. The basic-state SST pattern associated with the MJO was characterized by a positive zonal SST gradient from the Indian Ocean to the western Pacific, which provided a long-standing condition that allowed for sufficient buildup of MSE across the Indian Ocean to the western Pacific via large-scale low-level convergence over intraseasonal and longer time scales. The results of this study suggest the importance of such a basic-state SST, with a long-lasting positive zonal SST gradient, for enhancing convection over a longer than intraseasonal time scale in realizing a complete MJO life cycle.


2016 ◽  
Vol 29 (7) ◽  
pp. 2471-2492 ◽  
Author(s):  
C. E. Birch ◽  
S. Webster ◽  
S. C. Peatman ◽  
D. J. Parker ◽  
A. J. Matthews ◽  
...  

Abstract State-of-the-art regional climate model simulations that are able to resolve key mesoscale circulations are used, for the first time, to understand the interaction between the large-scale convective environment of the MJO and processes governing the strong diurnal cycle over the islands of the Maritime Continent (MC). Convection is sustained in the late afternoon just inland of the coasts because of sea breeze convergence. Previous work has shown that the variability in MC rainfall associated with the MJO is manifested in changes to this diurnal cycle; land-based rainfall peaks before the active convective envelope of the MJO reaches the MC, whereas oceanic rainfall rates peak while the active envelope resides over the region. The model simulations show that the main controls on oceanic MC rainfall in the early active MJO phases are the large-scale environment and atmospheric stability, followed by high oceanic latent heat flux forced by high near-surface winds in the later active MJO phases. Over land, rainfall peaks before the main convective envelope arrives (in agreement with observations), even though the large-scale convective environment is only moderately favorable for convection. The causes of this early rainfall peak are strong convective triggers from land–sea breeze circulations that result from high surface insolation and surface heating. During the peak MJO phases cloud cover increases and surface insolation decreases, which weakens the strength of the mesoscale circulations and reduces land-based rainfall, even though the large-scale environment remains favorable for convection at this time. Hence, scale interactions are an essential part of the MJO transition across the MC.


2018 ◽  
Vol 31 (14) ◽  
pp. 5731-5748 ◽  
Author(s):  
Casey D. Burleyson ◽  
Samson M. Hagos ◽  
Zhe Feng ◽  
Brandon W. J. Kerns ◽  
Daehyun Kim

Abstract The characteristics of Madden–Julian oscillation (MJO) events that strengthen and weaken over the Maritime Continent (MC) are examined. The real-time multivariate MJO (RMM) index is used to assess changes in global MJO amplitude over the MC. The MJO weakens at least twice as often as it strengthens over the MC, with weakening MJOs being twice as likely during El Niño compared to La Niña years and the reverse for strengthening events. MJO weakening shows a pronounced seasonal cycle that has not been previously documented. During the Northern Hemisphere (NH) summer and fall the RMM index can strengthen over the MC. MJOs that approach the MC during the NH winter typically weaken according to the RMM index. This seasonal cycle corresponds to whether the MJO crosses the MC primarily north or south of the equator. Because of the seasonal cycle, weakening MJOs are characterized by positive sea surface temperature and moist-static energy anomalies in the Southern Hemisphere (SH) of the MC compared to strengthening events. Analysis of the outgoing longwave radiation (OLR) MJO index (OMI) shows that MJO precipitation weakens when it crosses the MC along the equator. A possible explanation of this based on previous results is that the MJO encounters more landmasses and taller mountains when crossing along the equator or in the SH. The new finding of a seasonal cycle in MJO weakening over the MC highlights the importance of sampling MJOs throughout the year in future field campaigns designed to study MJO–MC interactions.


Atmosphere ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 1049
Author(s):  
Xin Li ◽  
Ming Yin ◽  
Xiong Chen ◽  
Minghao Yang ◽  
Fei Xia ◽  
...  

Based on the observation and reanalysis data, the relationship between the Madden–Julian Oscillation (MJO) over the Maritime Continent (MC) and the tropical Pacific–Indian Ocean associated mode was analyzed. The results showed that the MJO over the MC region (95°–150° E, 10° S–10° N) (referred to as the MC–MJO) possesses prominent interannual and interdecadal variations and seasonally “phase-locked” features. MC–MJO is strongest in the boreal winter and weakest in the boreal summer. Winter MC–MJO kinetic energy variation has significant relationships with the El Niño–Southern Oscillation (ENSO) in winter and the Indian Ocean Dipole (IOD) in autumn, but it correlates better with the tropical Pacific–Indian Ocean associated mode (PIOAM). The correlation coefficient between the winter MC–MJO kinetic energy index and the autumn PIOAM index is as high as −0.5. This means that when the positive (negative) autumn PIOAM anomaly strengthens, the MJO kinetic energy over the winter MC region weakens (strengthens). However, the correlation between the MC–MJO convection and PIOAM in winter is significantly weaker. The propagation of MJO over the Maritime Continent differs significantly in the contrast phases of PIOAM. During the positive phase of the PIOAM, the eastward propagation of the winter MJO kinetic energy always fails to move across the MC region and cannot enter the western Pacific. However, during the negative phase of the PIOAM, the anomalies of MJO kinetic energy over the MC is not significantly weakened, and MJO can propagate farther eastward and enter the western Pacific. It should be noted that MJO convection is more likely to extend to the western Pacific in the positive phases of PIOAM than in the negative phases. This is significant different with the propagation of the MJO kinetic energy.


2009 ◽  
Vol 22 (2) ◽  
pp. 201-216 ◽  
Author(s):  
Lina Zhang ◽  
Bizheng Wang ◽  
Qingcun Zeng

Abstract The impact of the Madden–Julian oscillation (MJO) on summer rainfall in Southeast China is investigated using the Real-time Multivariate MJO (RMM) index and the observational rainfall data. A marked transition of rainfall patterns from being enhanced to being suppressed is found in Southeast China (east of 105°E and south of 35°N) on intraseasonal time scales as the MJO convective center moves from the Indian Ocean to the western Pacific Ocean. The maximum positive and negative anomalies of regional mean rainfall are in excess of 10% relative to the climatological regional mean. Such different rainfall regimes are associated with the corresponding changes in physical fields such as the western Pacific subtropical high (WPSH), moisture, and vertical motions. When the MJO is mainly over the Indian Ocean, the WPSH shifts farther westward, and the moisture and upward motions in Southeast China are increased. In contrast, when the MJO enters the western Pacific, the WPSH retreats eastward, and the moisture and upward motions in Southeast China are decreased. It is suggested that the MJO may influence summer rainfall in Southeast China through remote and local dynamical mechanisms, which correspond to the rainfall enhancement and suppression, respectively. The remote role is the energy propagation of the Rossby wave forced by the MJO-related heating over the Indian Ocean through the low-level westerly waveguide from the tropical Indian Ocean to Southeast China. The local role is the northward shift of the upward branch of the anomalous meridional circulation when the MJO is over the western Pacific, which causes eastward retreat of the WPSH and suppressed moisture transport toward Southeast China.


2013 ◽  
Vol 26 (4) ◽  
pp. 1304-1321 ◽  
Author(s):  
Surendra P. Rauniyar ◽  
Kevin J. E. Walsh

Abstract This study examines the influence of ENSO on the diurnal cycle of rainfall during boreal winter for the period 1998–2010 over the Maritime Continent (MC) and Australia using Tropical Rainfall Measuring Mission (TRMM) and reanalysis data. The diurnal cycles are composited for the ENSO cold (La Niña) and warm (El Niño) phases. The k-means clustering technique is then applied to group the TRMM data into six clusters, each with a distinct diurnal cycle. Despite the alternating patterns of widespread large-scale subsidence and ascent associated with the Walker circulation, which dominates the climate over the MC during the opposing phases of ENSO, many of the islands of the MC show localized differences in rainfall anomalies that depend on the local geography and orography. While ocean regions mostly experience positive rainfall anomalies during La Niña, some local regions over the islands have more rainfall during El Niño. These local features are also associated with anomalies in the amplitude and characteristics of the diurnal cycle in these regions. These differences are also well depicted in large-scale dynamical fields derived from the interim ECMWF Re-Analysis (ERA-Interim).


2012 ◽  
Vol 69 (9) ◽  
pp. 2749-2758 ◽  
Author(s):  
Fei Liu ◽  
Bin Wang

Abstract The Madden–Julian oscillation (MJO) is a multiscale system. A skeleton model, developed by Majda and Stechmann, can capture some of planetary-scale aspects of observed features such as slow eastward propagation, nondispersive behavior, and quadrupole-vortex structure. However, the Majda–Stechmann model cannot explain the source of instability and the preferred planetary scale of the MJO. Since the MJO major convection region is leaded by its planetary boundary layer (PBL) moisture convergence, here a frictional skeleton model is built by implementing a slab PBL into the neutral skeleton model. As a skeleton model allowing the scale interaction, this model is only valid for large-scale waves. This study shows that the PBL frictional convergence provides a strong instability source for the long eastward modes, although it also destabilizes very short westward modes. For the long waves (wavenumber less than 5), the PBL Ekman pumping moistens the low troposphere to the east of the MJO convective envelope, and sets up favorable moist conditions to destabilize the MJO and favor only eastward modes. Sensitivity experiments show that a weak PBL friction will enhance the instability slightly. The sea surface temperature (SST) with a maximum at the equator also prefers the long eastward modes. These theoretical analysis results encourage further observations on the PBL regulation of mesosynoptic-scale motions, and exploration of the interaction between PBL and multiscale motions, associated with the MJO to improve the MJO simulation in general circulation models (GCMs).


Sign in / Sign up

Export Citation Format

Share Document