scholarly journals Large-Scale Environmental Characteristics of MJOs that Strengthen and Weaken over the Maritime Continent

2018 ◽  
Vol 31 (14) ◽  
pp. 5731-5748 ◽  
Author(s):  
Casey D. Burleyson ◽  
Samson M. Hagos ◽  
Zhe Feng ◽  
Brandon W. J. Kerns ◽  
Daehyun Kim

Abstract The characteristics of Madden–Julian oscillation (MJO) events that strengthen and weaken over the Maritime Continent (MC) are examined. The real-time multivariate MJO (RMM) index is used to assess changes in global MJO amplitude over the MC. The MJO weakens at least twice as often as it strengthens over the MC, with weakening MJOs being twice as likely during El Niño compared to La Niña years and the reverse for strengthening events. MJO weakening shows a pronounced seasonal cycle that has not been previously documented. During the Northern Hemisphere (NH) summer and fall the RMM index can strengthen over the MC. MJOs that approach the MC during the NH winter typically weaken according to the RMM index. This seasonal cycle corresponds to whether the MJO crosses the MC primarily north or south of the equator. Because of the seasonal cycle, weakening MJOs are characterized by positive sea surface temperature and moist-static energy anomalies in the Southern Hemisphere (SH) of the MC compared to strengthening events. Analysis of the outgoing longwave radiation (OLR) MJO index (OMI) shows that MJO precipitation weakens when it crosses the MC along the equator. A possible explanation of this based on previous results is that the MJO encounters more landmasses and taller mountains when crossing along the equator or in the SH. The new finding of a seasonal cycle in MJO weakening over the MC highlights the importance of sampling MJOs throughout the year in future field campaigns designed to study MJO–MC interactions.

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Karthik Balaguru ◽  
L. Ruby Leung ◽  
Samson M. Hagos ◽  
Sujith Krishnakumar

AbstractWhile the Madden–Julian Oscillation (MJO) has been shown to affect tropical cyclones (TCs) worldwide through its modulation of large-scale circulation in the atmosphere, little or no role for the ocean has been identified to date in this influence of MJO on TCs. Using observations and numerical model simulations, we demonstrate that MJO events substantially impact TCs over the Maritime Continent (MC) region through an oceanic pathway. While propagating across the MC region, MJO events cause significant sea surface cooling with an area-averaged value of about 0.35 ± 0.12 °C. Hence, TCs over the MC region immediately following the passage of MJO events encounter considerably cooler sea surface temperatures. Consequently, the enthalpy fluxes under the storms are reduced and the intensification rates decrease by more than 50% on average. These results highlight an important role played by the ocean in facilitating MJO-induced sub-seasonal variability in TC activity over the MC region.


2020 ◽  
pp. 1-56
Author(s):  
Kyle Itterly ◽  
Patrick Taylor ◽  
J. Brent Roberts

AbstractDiurnal air-sea coupling affects climate modes such as the Madden-Julian Oscillation (MJO) via the regional moist static energy budget. Prior to MJO initiation, large-scale subsidence increases (decreases) surface shortwave insolation (winds). These act in concert to significantly warm the uppermost layer of the ocean over the course of a single day and the ocean mixed layer over the course of 1-2 weeks. Here, we provide an integrated analysis of multiple surface, top-of-atmosphere, and atmospheric column observations to assess the covariability related to regions of strong diurnal sea surface temperature (dSST) warming over 44 MJO events between 2000-2018 to assess their role in MJO initiation. Combining satellite observations of evaporation and precipitation with reanalysis moisture budget terms, we find 30-50% enhanced moistening over high dSST regions during late afternoon using either ERA5 or MERRA-2 despite large model biases. Diurnally developing moisture convergence, only modestly weaker evaporation, and diurnal minimum precipitation act to locally enhance moistening over broad regions of enhanced diurnal warming, which rectifies onto the larger scale. Field campaign ship and sounding data corroborate that strong dSST periods are associated with reduced middle tropospheric humidity and larger diurnal amplitudes of surface warming, evaporation, instability, and column moistening. Further, we find greater daytime increases in low cloud cover and evidence of enhanced radiative destabilization for the top 50th dSST percentile. Together, these results support that dSST warming acts in concert with large-scale dynamics to enhance moist static energy during the suppressed to active phase transition of the MJO.


2021 ◽  
Author(s):  
Chen-Shuo Fan ◽  
Dietmar Dommenget

Abstract In this study we present a diagnostic model for the large-scale tropical circulation (vertical motion) based on the moist static energy equation for first baroclinic mode anomalies (MSEB model). The aim of this model is to provide a basis for conceptual understanding of the drivers of the large-scale tropical circulation changes or variations as they are observed or simulated in Coupled Model Inter-comparison Project Phase (CMIP) models. The MSEB model is based on previous studies relating vertical motion in the tropics to the driving forces of the tropospheric column heating rate, advection of moisture and heat, and the moist stability of the air columns scaled by the first baroclinic mode. We apply and evaluate the skill of this model on the basis of observations (reanalysis) and CMIP model simulations of the large-scale tropical vertical motion. The model is capable of diagnosing the large-scale pattern of vertical motion of the mean state, annual cycle, interannual variability, model-to-model variations and in warmer climates of climate change scenarios with correlations of 0.6-0.8 and nearly unbiased amplitudes for the whole tropics (30°S-30°N). The skills are generally better over oceans at large scales and worse over land regions. The model also tends to have an upward motion bias at higher latitudes, but still has good correlations in variations even at the higher latitudes. It is further illustrated how the MSEB model can be used to diagnose the sensitivity of the tropical vertical motion to the forcing terms of the models for the mean state, seasonal cycle and interannual variability such as El Nino. The model clearly illustrates how the seasonal cycle in the circulation is driven by the incoming solar radiation and how the El Nino shift in the Walker circulation results mainly from the sea-surface temperature changes. Overall, the model provides a very good diagnostic tool to understand tropical circulation change on larger and longer (>month) time scales.


2014 ◽  
Vol 142 (5) ◽  
pp. 1697-1715 ◽  
Author(s):  
George N. Kiladis ◽  
Juliana Dias ◽  
Katherine H. Straub ◽  
Matthew C. Wheeler ◽  
Stefan N. Tulich ◽  
...  

Abstract Two univariate indices of the Madden–Julian oscillation (MJO) based on outgoing longwave radiation (OLR) are developed to track the convective component of the MJO while taking into account the seasonal cycle. These are compared with the all-season Real-time Multivariate MJO (RMM) index of Wheeler and Hendon derived from a multivariate EOF of circulation and OLR. The gross features of the OLR and circulation of composite MJOs are similar regardless of the index, although RMM is characterized by stronger circulation. Diversity in the amplitude and phase of individual MJO events between the indices is much more evident; this is demonstrated using examples from the Dynamics of the Madden–Julian Oscillation (DYNAMO) field campaign and the Year of Tropical Convection (YOTC) virtual campaign. The use of different indices can lead to quite disparate conclusions concerning MJO timing and strength, and even as to whether or not an MJO has occurred. A disadvantage of using daily OLR as an EOF basis is that it is a much noisier field than the large-scale circulation, and filtering is necessary to obtain stable results through the annual cycle. While a drawback of filtering is that it cannot be done in real time, a reasonable approximation to the original fully filtered index can be obtained by following an endpoint smoothing method. When the convective signal is of primary interest, the authors advocate the use of satellite-based metrics for retrospective analysis of the MJO for individual cases, as well as for the analysis of model skill in initiating and evolving the MJO.


2021 ◽  
Vol 34 (2) ◽  
pp. 839-853
Author(s):  
Feng Hu ◽  
Tim Li ◽  
Jianyun Gao ◽  
Lisheng Hao

AbstractTwo existing moisture mode theories of the MJO, one emphasizing boundary layer moisture asymmetry (MA) and the other emphasizing column-integrated moist static energy (MSE) tendency asymmetry (TA), were validated with the diagnosis of observational data during 1979–2012. A total of 2343 MJO days are selected. While all these days show a clear phase leading of the boundary layer moisture, 20% of these days do not show a positive column-integrated MSE tendency in front of MJO convection (non-TA). A further MSE budget analysis indicates that the difference between the non-TA composite and the TA composite lies in the zonal extent of anomalously vertical overturning circulation in front of the MJO convection. A background mean precipitation modulation mechanism is proposed to explain the distinctive circulation responses. Dependent on the MJO location, an anomalous Gill response to the heating is greatly modulated by the seasonal mean and ENSO induced precipitation fields. Despite the negative MSE tendency in front of MJO convection in the non-TA group, the system continues moving eastward due to the effect of the boundary layer moistening, which promotes a convectively unstable stratification ahead of MJO convection. The analysis result suggests that the first type of moisture mode theories, the moisture asymmetry mechanism, appears more robust, particularly over the eastern Maritime Continent and western Pacific.


2013 ◽  
Vol 26 (8) ◽  
pp. 2417-2431 ◽  
Author(s):  
Qiongqiong Cai ◽  
Guang J. Zhang ◽  
Tianjun Zhou

Abstract The role of shallow convection in Madden–Julian oscillation (MJO) simulation is examined in terms of the moist static energy (MSE) and moisture budgets. Two experiments are carried out using the NCAR Community Atmosphere Model, version 3.0 (CAM3.0): a “CTL” run and an “NSC” run that is the same as the CTL except with shallow convection disabled below 700 hPa between 20°S and 20°N. Although the major features in the mean state of outgoing longwave radiation, 850-hPa winds, and vertical structure of specific humidity are reasonably reproduced in both simulations, moisture and clouds are more confined to the planetary boundary layer in the NSC run. While the CTL run gives a better simulation of the MJO life cycle when compared with the reanalysis data, the NSC shows a substantially weaker MJO signal. Both the reanalysis data and simulations show a recharge–discharge mechanism in the MSE evolution that is dominated by the moisture anomalies. However, in the NSC the development of MSE and moisture anomalies is weaker and confined to a shallow layer at the developing phases, which may prevent further development of deep convection. By conducting the budget analysis on both the MSE and moisture, it is found that the major biases in the NSC run are largely attributed to the vertical and horizontal advection. Without shallow convection, the lack of gradual deepening of upward motion during the developing stage of MJO prevents the lower troposphere above the boundary layer from being preconditioned for deep convection.


2021 ◽  
Author(s):  
Anna Lea Albright ◽  
Sandrine Bony ◽  
Bjorn Stevens ◽  
Raphaela Vogel

<p>The trades form an important link in the atmospheric energy supply, transporting moisture and momentum to the deep tropics and influencing the global hydrological cycle. Trade-wind cumuli are the most ubiquitous cloud type over tropical oceans, yet models disagree in simulating their response to warming. Our study takes advantage of extensive in-situ soundings performed during the EUREC4A campaign, which took place in the downstream trades of the North Atlantic in winter 2020. We employ 1068 dropsondes made in a ca. 2deg x 2deg area to close the moisture and energy budgets of the subcloud layer and atmospheric column. Our motivation for closing moisture and energy budgets using EUREC4A data is two-fold. First, we try to understand which large-scale environmental factors control variability in subcloud layer moisture and moist static energy, given their influence on setting convective potential. Second, we quantify the interplay between clouds and their environment through an energetic lens. The cloud radiative effect emerges as a residual from the total column moist static energy budget, yielding an energetic estimate of clouds. We quantify how this cloud radiative effect compares with coincident satellite and geometric (i.e. cloud fraction) estimates of cloudiness, varies on different scales, and relates to large-scale environmental conditions.</p>


2021 ◽  
Author(s):  
Ines Höschel ◽  
Dörthe Handorf ◽  
Christoph Jacobi ◽  
Johannes Quaas

<p>The loss of Arctic sea ice as a consequence of global warming is changing the forcing of the atmospheric large-scale circulation.  Areas not covered with sea ice anymore may act as an additional heat source.  Associated changes in Rossby wave propagation can initiate tropospheric and stratospheric pathways of Arctic - Mid-latitude linkages.  These pathways have the potential to impact on the large-scale energy transport into the Arctic.  On the other hand, studies show that the large-scale circulation contributes to Arctic warming by poleward transport of moist static energy. This presentation shows results from research within the Transregional Collaborative Research Center “ArctiC Amplification: Climate Relevant Atmospheric and SurfaCe Processes, and Feedback Mechanisms (AC)3” funded by the Deutsche Forschungsgemeinschaft.  Using the ERA interim and ERA5 reanalyses the meridional moist static energy transport during high ice and low ice periods is compared.  The investigation discriminates between contributions from planetary and synoptic scale.  Special emphasis is put on the seasonality of the modulations of the large-scale energy transport.</p>


2020 ◽  
Vol 33 (15) ◽  
pp. 6689-6705
Author(s):  
David Coppin ◽  
Gilles Bellon ◽  
Alexander Pletzer ◽  
Chris Scott

AbstractWe propose an algorithm to detect and track coastal precipitation systems and we apply it to 18 years of the high-resolution (8 km and 30 min) Climate Prediction Center CMORPH precipitation estimates in the tropics. Coastal precipitation in the Maritime Continent and Central America contributes to up to 80% of the total rainfall. It also contributes strongly to the diurnal cycle over land with the largest contribution from systems lasting between 6 and 12 h and contributions from longer-lived systems peaking later in the day. While the diurnal cycle of coastal precipitation is more intense over land in the summer hemisphere, its timing is independent of seasons over both land and ocean because the relative contributions from systems of different lifespans are insensitive to the seasonal cycle. We investigate the hypothesis that coastal precipitation is enhanced prior to the arrival of the Madden–Julian oscillation (MJO) envelope over the Maritime Continent. Our results support this hypothesis and show that, when considering only coastal precipitation, the diurnal cycle appears reinforced even earlier over islands than previously reported. We discuss the respective roles of coastal and large-scale precipitation in the propagation of the MJO over the Maritime Continent. We also document a shift in diurnal cycle with the phases of the MJO, which results from changes in the relative contributions of short-lived versus long-lived coastal systems.


Sign in / Sign up

Export Citation Format

Share Document