scholarly journals The response of the Northern Hemisphere storm tracks and jetstreams to climate change in the CMIP3, CMIP5, and CMIP6 climate models

Author(s):  
Ben Harvey ◽  
Peter Cook ◽  
Len Shaffrey ◽  
Reinhard Schiemann

<p>Understanding and predicting how extratropical cyclones might respond to climate change is essential for assessing future weather risks and informing climate change adaptation strategies. Climate model simulations provide a vital component of this assessment, with the caveat that their representation of the present-day climate is adequate. In this study the representation of the NH storm tracks and jet streams and their responses to climate change are evaluated across the three major phases of the Coupled Model Intercomparison Project: CMIP3 (2007), CMIP5 (2012), and CMIP6 (2019). The aim is to quantity how present-day biases in the NH storm tracks and jet streams have evolved with model developments, and to further our understanding of their responses to climate change.</p><p>The spatial pattern of the present-day biases in CMIP3, CMIP5, and CMIP6 are similar. However, the magnitude of the biases in the CMIP6 models is substantially lower in the DJF North Atlantic storm track and jet stream than in the CMIP3 and CMIP5 models. In summer, the biases in the JJA North Atlantic and North Pacific storm tracks are also much reduced in the CMIP6 models. Despite this, the spatial pattern of the climate change response in the NH storm tracks and jet streams are similar across the CMIP3, CMIP5, and CMIP6 ensembles. The SSP2-4.5 scenario responses in the CMIP6 models are substantially larger than in the corresponding RCP4.5 CMIP5 models, consistent with the larger climate sensitivities of the CMIP6 models compared to CMIP5.</p>

2013 ◽  
Vol 26 (15) ◽  
pp. 5379-5396 ◽  
Author(s):  
Giuseppe Zappa ◽  
Len C. Shaffrey ◽  
Kevin I. Hodges

Abstract The ability of the climate models participating in phase 5 of the Coupled Model Intercomparison Project (CMIP5) to simulate North Atlantic extratropical cyclones in winter [December–February (DJF)] and summer [June–August (JJA)] is investigated in detail. Cyclones are identified as maxima in T42 vorticity at 850 hPa and their propagation is tracked using an objective feature-tracking algorithm. By comparing the historical CMIP5 simulations (1976–2005) and the ECMWF Interim Re-Analysis (ERA-Interim; 1979–2008), the authors find that systematic biases affect the number and intensity of North Atlantic cyclones in CMIP5 models. In DJF, the North Atlantic storm track tends to be either too zonal or displaced southward, thus leading to too few and weak cyclones over the Norwegian Sea and too many cyclones in central Europe. In JJA, the position of the North Atlantic storm track is generally well captured but some CMIP5 models underestimate the total number of cyclones. The dynamical intensity of cyclones, as measured by either T42 vorticity at 850 hPa or mean sea level pressure, is too weak in both DJF and JJA. The intensity bias has a hemispheric character, and it cannot be simply attributed to the representation of the North Atlantic large-scale atmospheric state. Despite these biases, the representation of Northern Hemisphere (NH) storm tracks has improved since CMIP3 and some CMIP5 models are able of representing well both the number and the intensity of North Atlantic cyclones. In particular, some of the higher-atmospheric-resolution models tend to have a better representation of the tilt of the North Atlantic storm track and of the intensity of cyclones in DJF.


2015 ◽  
Vol 28 (13) ◽  
pp. 5254-5271 ◽  
Author(s):  
Elizabeth A. Barnes ◽  
Lorenzo M. Polvani

Abstract Recent studies have hypothesized that Arctic amplification, the enhanced warming of the Arctic region compared to the rest of the globe, will cause changes in midlatitude weather over the twenty-first century. This study exploits the recently completed phase 5 of the Coupled Model Intercomparison Project (CMIP5) and examines 27 state-of-the-art climate models to determine if their projected changes in the midlatitude circulation are consistent with the hypothesized impact of Arctic amplification over North America and the North Atlantic. Under the largest future greenhouse forcing (RCP8.5), it is found that every model, in every season, exhibits Arctic amplification by 2100. At the same time, the projected circulation responses are either opposite in sign to those hypothesized or too widely spread among the models to discern any robust change. However, in a few seasons and for some of the circulation metrics examined, correlations are found between the model spread in Arctic amplification and the model spread in the projected circulation changes. Therefore, while the CMIP5 models offer some evidence that future Arctic warming may be able to modulate some aspects of the midlatitude circulation response in some seasons, the analysis herein leads to the conclusion that the net circulation response in the future is unlikely to be determined solely—or even primarily—by Arctic warming according to the sequence of events recently hypothesized.


2019 ◽  
Vol 58 (7) ◽  
pp. 1509-1522 ◽  
Author(s):  
Kajsa M. Parding ◽  
Rasmus Benestad ◽  
Abdelkader Mezghani ◽  
Helene B. Erlandsen

AbstractA method for empirical–statistical downscaling was adapted to project seasonal cyclone density over the North Atlantic Ocean. To this aim, the seasonal mean cyclone density was derived from instantaneous values of the 6-h mean sea level pressure (SLP) reanalysis fields. The cyclone density was then combined with seasonal mean reanalysis and global climate model projections of SLP or 500-hPa geopotential height to obtain future projections of the North Atlantic storm tracks. The empirical–statistical approach is computationally efficient because it makes use of seasonally aggregated cyclone statistics and allows the future cyclone density to be estimated from the full ensemble of available CMIP5 models rather than from a smaller subset. However, the projected cyclone density in the future differs considerably depending on the choice of predictor, SLP, or 500-hPa geopotential height. This discrepancy suggests that the relationship between the cyclone density and SLP, 500-hPa geopotential height, or both is nonstationary; that is, that the statistical model depends on the calibration period. A stationarity test based on 6-hourly HadGEM2-ES data indicated that the 500-hPa geopotential height was not a robust predictor of cyclone density.


2013 ◽  
Vol 26 (16) ◽  
pp. 5846-5862 ◽  
Author(s):  
Giuseppe Zappa ◽  
Len C. Shaffrey ◽  
Kevin I. Hodges ◽  
Phil G. Sansom ◽  
David B. Stephenson

Abstract The response of North Atlantic and European extratropical cyclones to climate change is investigated in the climate models participating in phase 5 of the Coupled Model Intercomparison Project (CMIP5). In contrast to previous multimodel studies, a feature-tracking algorithm is here applied to separately quantify the responses in the number, the wind intensity, and the precipitation intensity of extratropical cyclones. Moreover, a statistical framework is employed to formally assess the uncertainties in the multimodel projections. Under the midrange representative concentration pathway (RCP4.5) emission scenario, the December–February (DJF) response is characterized by a tripolar pattern over Europe, with an increase in the number of cyclones in central Europe and a decreased number in the Norwegian and Mediterranean Seas. The June–August (JJA) response is characterized by a reduction in the number of North Atlantic cyclones along the southern flank of the storm track. The total number of cyclones decreases in both DJF (−4%) and JJA (−2%). Classifying cyclones according to their intensity indicates a slight basinwide reduction in the number of cyclones associated with strong winds, but an increase in those associated with strong precipitation. However, in DJF, a slight increase in the number and intensity of cyclones associated with strong wind speeds is found over the United Kingdom and central Europe. The results are confirmed under the high-emission RCP8.5 scenario, where the signals tend to be larger. The sources of uncertainty in these projections are discussed.


2021 ◽  
pp. 1-56
Author(s):  
Joseph W. Lockwood ◽  
Carolina O. Dufour ◽  
Stephen M. Griffies ◽  
Michael Winton

AbstractThis study investigates the occurrence of the Weddell Sea Polynya under an idealized climate change scenario by evaluating simulations from climate models of different ocean resolutions. The GFDL-CM2.6 climate model, with roughly 3.8 km horizontal ocean grid spacing in the high latitudes, forms aWeddell Sea Polynya at similar time and duration under idealized climate change forcing as under pre-industrial forcing. In contrast, all convective models forming the fifth phase of the Coupled Model Intercomparison Project (CMIP5) show either a cessation or a slowdown of Weddell Sea Polynya events under climate warming. The representation of the Antarctic Slope Current and related Antarctic Slope Front is found to be key in explaining the differences between the two categories of models, with these features being more realistic in CM2.6 than in CMIP5. In CM2.6, the freshwater input driven by sea ice melt and enhanced runoff found under climate warming largely remains on the shelf region since the slope front restricts the lateral spread of the freshwater. In contrast, for most CMIP5 models, open ocean stratification is enhanced by freshening since the absence of a slope front allows coastal freshwater anomalies to spread into the open ocean. This enhanced freshening contributes to the slow down the occurrence ofWeddell Sea Polynyas. Hence, an improved representation of Weddell Sea shelf processes in current climate models is desirable to increase our ability to predict the fate of the Weddell Sea Polynyas under climate change.


2021 ◽  
Author(s):  
Mareike Schuster ◽  
Uwe Ulbrich

<p>Windstorms are considered the most devastating natural peril in many regions around the globe. For insurance associations in Europe for example, the damages generated by windstorms make up to about 90% of the claims in the category of natural hazards. The interannual variability of windstorms can be quite strong and thus research has recently focused on this topic.</p><p>However, storm risk and its changes under anthropogenically induced climate change are so far rather little discussed in literature. Thus, there are still large uncertainties about how climate change will affect the extratropical circulation. CMIP5 models showed at times opposing signals regarding number and strength of windstorm generating cyclones and storm tracks. In more detail, the latest IPCC AR5 states that substantial uncertainty and low confidence remains in projecting changes in NH storm tracks, especially for the North Atlantic basin.</p><p>With the lately released CMIP6 simulations, providing model output of increased spatial and temporal resolution, there is potential for new insights and enhanced confidence regarding future trends of storminess.</p><p>In our study, we assess characteristics and trends of windstorm diagnostics in an ensemble of the latest CMIP6 climate scenario simulations, with a focus to the North Atlantic basin and winterstorms affecting Europe.</p><p>In the CMIP6 model ensemble the trends of winter windstorm frequencies appear to be overall weaker in an anthropogenically changed climate than in the preceding CMIP5 scenarios; yet, first results indicate that they are somewhat more consistent amongst models. All CMIP6 models exhibit a windstorm frequency increase locally confined over the Arctic, while in the mid and high latitudes a wide-ranging decrease of windstorm activity is simulated. In our study we will also assess what this entails for characteristics like life time, intensity and size.</p>


2021 ◽  
Author(s):  
Joseph Lockwood ◽  
Carolina Dufour ◽  
Stephen Griffies ◽  
Michael Winton

<p>This study investigates the occurrence of the Weddell Sea Polynya under an idealized</p><p>climate change scenario by evaluating simulations from climate models of different</p><p>ocean resolutions. The GFDL-CM2.6 climate model, with roughly 3.8 km</p><p>horizontal ocean grid spacing in the high latitudes, forms a Weddell Sea Polynya at</p><p>similar time and duration under idealized climate change forcing as under pre-industrial</p><p>forcing. In contrast, all convective models forming the fifth phase of the Coupled Model</p><p>Intercomparison Project (CMIP5) show either a cessation or a slowdown of Weddell</p><p>Sea Polynya events under climate warming. The representation of the Antarctic Slope</p><p>Current and related Antarctic Slope Front is found to be key in explaining the</p><p>differences between the two categories of models, with these features being more</p><p>realistic in CM2.6 than in CMIP5. In CM2.6, the freshwater input driven by sea ice melt</p><p>and enhanced runoff found under climate warming largely remains on the shelf region</p><p>since the slope front restricts the lateral spread of the freshwater. In contrast, for most</p><p>CMIP5 models, open ocean stratification is enhanced by freshening since the absence</p><p>of a slope front allows coastal freshwater anomalies to spread into the open ocean.</p><p>This enhanced freshening contributes to the slow down the occurrence of Weddell Sea</p><p>Polynyas. Hence, an improved representation of Weddell Sea shelf processes in</p><p>current climate models is desirable to increase our ability to predict the fate of the</p><p>Weddell Sea Polynyas under climate change.</p>


2020 ◽  
Author(s):  
Yuqiong Zheng

<p>This study evaluates the ability of 35 climate models, which participate in the Coupled Model Intercomparison Project Phase 5 (CMIP5) historical climate simulations, in reproducing the connection between boreal spring Arctic Oscillation (AO) and its following winter El Niño-Southern Oscillation (ENSO). The spring AO-winter ENSO correlations range from -0.41 to 0.44 among the 35 models for the period of 1958-2005. Ensemble means of the models with significant positive and negative AO-ENSO correlations both show strong spring sea surface temperature (SST) cooling in the subtropical North Pacific during a positive phase of spring AO, which is conducive to occurrence of a La Niña event in the following winter. However, the models with positive AO-ENSO relations produce a pronounced spring cyclonic anomaly over the subtropical northwestern Pacific and westerly anomalies over the tropical western Pacific (TWP). These westerly wind anomalies would lead to SST warming and positive precipitation anomalies in the tropical central-eastern Pacific (TCEP) during the following summer, which could maintain and develop into an El Niño-like pattern in the following winter via a positive air-sea feedback. By contrast, the models with negative AO-ENSO connections fail to reproduce the spring AO-related cyclonic anomaly over the subtropical northwestern Pacific and westerly wind anomalies in the TWP. Thus, these models would produce a La Niña-like pattern in the subsequent winter. Difference in the spring AO-associated atmospheric anomalies over the subtropical North Pacific among the CMIP5 models may be attributed to biases of the models in simulating the spring climatological storm track.</p>


2020 ◽  
Author(s):  
jiangling hu ◽  
duoying ji

<p>As the land surface warms, a subsequent reduction in snow and ice cover reveals a less reflective surface that absorbs more solar radiation, which further enhances the initial warming. This positive feedback climate mechanism is the snow albedo feedback (SAF), which will exacerbate climate warming and is the second largest contributor to Arctic amplification. Snow albedo feedback will increase the sensitivity of climate change in the northern hemisphere, which affects the accuracy of climate models in simulation research of climate change, and further affects the credibility of future climate prediction results.</p><p>Using the latest generation of climate models from CMIP6 (Coupled Model Intercomparison Project Version 6), we analyze seasonal cycle snow albedo feedback in Northern Hemisphere extratropics. We find that the strongest SAF strength is in spring (mean: -1.34 %K<sup>-1</sup>), second strongest is autumn (mean: -1.01 %K<sup>-1</sup>), the weakest is in summer (mean: -0.18 %K<sup>-1</sup>). Except summer, the SAF strength is approximately 0.15% K<sup>-1</sup> larger than CMIP5 models in the other three seasons. The spread of spring SAF strength (range: -1.09 to -1.37% K<sup>-1</sup>) is larger than CMIP5 models. Oppositely, the spread of summer SAF strength (range: 0.20 to -0.56% K<sup>-1</sup>) is smaller than CMIP5 models. When compared with CMIP5 models, the spread of autumn and winter SAF strength have not changed much.</p>


Sign in / Sign up

Export Citation Format

Share Document