scholarly journals The Response of the Northern Hemisphere Storm Tracks and Jet Streams to Climate Change in the CMIP3, CMIP5, and CMIP6 Climate Models

2020 ◽  
Vol 125 (23) ◽  
Author(s):  
B. J. Harvey ◽  
P. Cook ◽  
L. C. Shaffrey ◽  
R. Schiemann
2020 ◽  
Author(s):  
Ben Harvey ◽  
Peter Cook ◽  
Len Shaffrey ◽  
Reinhard Schiemann

<p>Understanding and predicting how extratropical cyclones might respond to climate change is essential for assessing future weather risks and informing climate change adaptation strategies. Climate model simulations provide a vital component of this assessment, with the caveat that their representation of the present-day climate is adequate. In this study the representation of the NH storm tracks and jet streams and their responses to climate change are evaluated across the three major phases of the Coupled Model Intercomparison Project: CMIP3 (2007), CMIP5 (2012), and CMIP6 (2019). The aim is to quantity how present-day biases in the NH storm tracks and jet streams have evolved with model developments, and to further our understanding of their responses to climate change.</p><p>The spatial pattern of the present-day biases in CMIP3, CMIP5, and CMIP6 are similar. However, the magnitude of the biases in the CMIP6 models is substantially lower in the DJF North Atlantic storm track and jet stream than in the CMIP3 and CMIP5 models. In summer, the biases in the JJA North Atlantic and North Pacific storm tracks are also much reduced in the CMIP6 models. Despite this, the spatial pattern of the climate change response in the NH storm tracks and jet streams are similar across the CMIP3, CMIP5, and CMIP6 ensembles. The SSP2-4.5 scenario responses in the CMIP6 models are substantially larger than in the corresponding RCP4.5 CMIP5 models, consistent with the larger climate sensitivities of the CMIP6 models compared to CMIP5.</p>


2019 ◽  
Vol 5 (4) ◽  
pp. 372-389 ◽  
Author(s):  
Robert C. J. Wills ◽  
Rachel H. White ◽  
Xavier J. Levine

Abstract Purpose of Review Stationary waves are planetary-scale longitudinal variations in the time-averaged atmospheric circulation. Here, we consider the projected response of Northern Hemisphere stationary waves to climate change in winter and summer. We discuss how the response varies across different metrics, identify robust responses, and review proposed mechanisms. Recent Findings Climate models project shifts in the prevailing wind patterns, with corresponding impacts on regional precipitation, temperature, and extreme events. Recent work has improved our understanding of the links between stationary waves and regional climate and identified robust stationary wave responses to climate change, which include an increased zonal lengthscale in winter, a poleward shift of the wintertime circulation over the Pacific, a weakening of monsoonal circulations, and an overall weakening of stationary wave circulations, particularly their divergent component and quasi-stationary disturbances. Summary Numerous factors influence Northern Hemisphere stationary waves, and mechanistic theories exist for only a few aspects of the stationary wave response to climate change. Idealized studies have proven useful for understanding the climate responses of particular atmospheric circulation features and should be a continued focus of future research.


2006 ◽  
Vol 19 (11) ◽  
pp. 2617-2630 ◽  
Author(s):  
Xin Qu ◽  
Alex Hall

Abstract In this paper, the two factors controlling Northern Hemisphere springtime snow albedo feedback in transient climate change are isolated and quantified based on scenario runs of 17 climate models used in the Intergovernmental Panel on Climate Change Fourth Assessment Report. The first factor is the dependence of planetary albedo on surface albedo, representing the atmosphere's attenuation effect on surface albedo anomalies. It is potentially a major source of divergence in simulations of snow albedo feedback because of large differences in simulated cloud fields in Northern Hemisphere land areas. To calculate the dependence, an analytical model governing planetary albedo was developed. Detailed validations of the analytical model for two of the simulations are shown, version 3 of the Community Climate System Model (CCSM3) and the Geophysical Fluid Dynamics Laboratory global coupled Climate Model 2.0 (CM2.0), demonstrating that it facilitates a highly accurate calculation of the dependence of planetary albedo on surface albedo given readily available simulation output. In all simulations it is found that surface albedo anomalies are attenuated by approximately half in Northern Hemisphere land areas as they are transformed into planetary albedo anomalies. The intermodel standard deviation in the dependence of planetary albedo on surface albedo is surprisingly small, less than 10% of the mean. Moreover, when an observational estimate of this factor is calculated by applying the same method to the satellite-based International Satellite Cloud Climatology Project (ISCCP) data, it is found that most simulations agree with ISCCP values to within about 10%, despite further disagreements between observed and simulated cloud fields. This suggests that even large relative errors in simulated cloud fields do not result in significant error in this factor, enhancing confidence in climate models. The second factor, related exclusively to surface processes, is the change in surface albedo associated with an anthropogenically induced temperature change in Northern Hemisphere land areas. It exhibits much more intermodel variability. The standard deviation is about ⅓ of the mean, with the largest value being approximately 3 times larger than the smallest. Therefore this factor is unquestionably the main source of the large divergence in simulations of snow albedo feedback. To reduce the divergence, attention should be focused on differing parameterizations of snow processes, rather than intermodel variations in the attenuation effect of the atmosphere on surface albedo anomalies.


2006 ◽  
Vol 28 (7-8) ◽  
pp. 683-702 ◽  
Author(s):  
C. Z. Greeves ◽  
V. D. Pope ◽  
R. A. Stratton ◽  
G. M. Martin

2020 ◽  
Author(s):  
jiangling hu ◽  
duoying ji

<p>As the land surface warms, a subsequent reduction in snow and ice cover reveals a less reflective surface that absorbs more solar radiation, which further enhances the initial warming. This positive feedback climate mechanism is the snow albedo feedback (SAF), which will exacerbate climate warming and is the second largest contributor to Arctic amplification. Snow albedo feedback will increase the sensitivity of climate change in the northern hemisphere, which affects the accuracy of climate models in simulation research of climate change, and further affects the credibility of future climate prediction results.</p><p>Using the latest generation of climate models from CMIP6 (Coupled Model Intercomparison Project Version 6), we analyze seasonal cycle snow albedo feedback in Northern Hemisphere extratropics. We find that the strongest SAF strength is in spring (mean: -1.34 %K<sup>-1</sup>), second strongest is autumn (mean: -1.01 %K<sup>-1</sup>), the weakest is in summer (mean: -0.18 %K<sup>-1</sup>). Except summer, the SAF strength is approximately 0.15% K<sup>-1</sup> larger than CMIP5 models in the other three seasons. The spread of spring SAF strength (range: -1.09 to -1.37% K<sup>-1</sup>) is larger than CMIP5 models. Oppositely, the spread of summer SAF strength (range: 0.20 to -0.56% K<sup>-1</sup>) is smaller than CMIP5 models. When compared with CMIP5 models, the spread of autumn and winter SAF strength have not changed much.</p>


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Timothy Paul Eichler ◽  
Francisco Alvarez ◽  
Jon Gottschalck

Evaluating the climatology and interannual variability of storm tracks in climate models represents an excellent way to evaluate their ability to simulate synoptic-scale phenomena. We generate storm tracks from the National Center for Environmental Prediction (NCEP) Climate Forecast System (CFS) model for the northern hemisphere (NH) and compare them to storm tracks generated from NCEP’s reanalysis I data, the European Centre for Medium Range Prediction (ECMWF) ERA40 data, and CFS reanalysis data. To assess interannual variability, we analyze the impacts of El Niño, the North Atlantic Oscillation (NAO), and the Indian Ocean Dipole (IOD). We show that the CFS model is capable of simulating realistic storm tracks for frequency and intensity in the NH. The CFS storm tracks exhibit a reasonable response to El Niño and the NAO. However, it did not capture interannual variability for the IOD. Since one path by which storm tracks respond to external forcing is via Rossby waves due to anomalous heating, the CFS model may not be able to capture this effect especially since anomalous heating for the IOD is more local than El Niño. Our assessment is that the CFS model’s storm track response is sensitive to the strength of external forcing.


2008 ◽  
Vol 21 (8) ◽  
pp. 1669-1679 ◽  
Author(s):  
U. Ulbrich ◽  
J. G. Pinto ◽  
H. Kupfer ◽  
G. C. Leckebusch ◽  
T. Spangehl ◽  
...  

Abstract Winter storm-track activity over the Northern Hemisphere and its changes in a greenhouse gas scenario (the Special Report on Emission Scenarios A1B forcing) are computed from an ensemble of 23 single runs from 16 coupled global climate models (CGCMs). All models reproduce the general structures of the observed climatological storm-track pattern under present-day forcing conditions. Ensemble mean changes resulting from anthropogenic forcing include an increase of baroclinic wave activity over the eastern North Atlantic, amounting to 5%–8% by the end of the twenty-first century. Enhanced activity is also found over the Asian continent and over the North Pacific near the Aleutian Islands. At high latitudes and over parts of the subtropics, activity is reduced. Variations of the individual models around the ensemble average signal are not small, with a median of the pattern correlation near r = 0.5. There is, however, no evidence for a link between deviations in present-day climatology and deviations with respect to climate change.


2020 ◽  
Vol 163 (1) ◽  
pp. 337-357
Author(s):  
Nekeisha Spencer ◽  
Eric Strobl

AbstractWe examine whether Caribbean islands will be worse off as hurricane activity alters under climate change. To this end, we construct island level damages for synthetic storm tracks generated from four climate models under current and future climate settings. Using a flexible stochastic dominance preference ordering framework, we find that the fat-tailed and uncertain nature of the distribution of storms makes it difficult to conclude that the region will be worse off under climate change, and is likely to depend on the degree of adaptation.


2017 ◽  
Author(s):  
Sonja Molnos ◽  
Stefan Petri ◽  
Jascha Lehmann ◽  
Erik Peukert ◽  
Dim Coumou

Abstract. Climate and weather conditions in the mid-latitudes are strongly driven by the large-scale atmosphere circulation. Observational data indicates that important components of the large-scale circulation have changed in recent decades including the strength of the Hadley cell, jet streams, storm tracks and planetary waves. Associated impacts cover a broad range, including changes in the frequency and nature of weather extremes and shifts of fertile habitats with implications for biodiversity and agriculture. Dynamical theories have been proposed that link the shift of the poleward edge of the Northern Hadley cell to changes in the meridional temperature gradient. Moreover, model simulations have been carried out to analyse the cause of observed and projected changes in the large-scale atmosphere circulation. However, the question of the underlying drivers and particularly the possible role of global warming is still debated. Here, we use a statistical-dynamical atmosphere model (SDAM) to analyse the sensitivity of the Northern Hemisphere Hadley cell, storm tracks, jet streams and planetary waves to changes in temperature fields by systematically altering the zonal and meridional temperature gradient as well as the global mean surface temperature.


Eos ◽  
2017 ◽  
Author(s):  
Brendan Bane

A simplified view of ozone chemistry can cause climate models to overestimate the response of jet streams to increasing greenhouse gases.


Sign in / Sign up

Export Citation Format

Share Document