Improved thermal characterization of alpine permafrost sites by broadband SIP measurements

Author(s):  
Jonas K. Limbrock ◽  
Maximilian Weigand ◽  
Andreas Kemna

<p>Geoelectrical methods are increasingly used for non-invasive characterization and monitoring of permafrost sites, since the electrical properties of the subsoil are sensitive to the phase change of liquid to frozen water. In this context, electrical subsurface parameters act as proxies for temperature and ice content.  However, it is still challenging to distinguish between air and ice in the pore space of the rock based on the resistivity method alone due to their similarly low electrical conductivity. This ambiguity in the subsurface conduction properties can be reduced by considering the spectral electrical polarization signature of ice using the Spectral Induced Polarization (SIP) method, in which the complex, frequency-dependent impedance is measured. These measurements are hypothesized to allowing for the quantification of ice content (and thus differentiation of ice and air), and for the improved thermal characterization of alpine permafrost sites.</p><p>In the present study, vertical SIP sounding measurements have been made at different alpine permafrost sites in a frequency range from 100 mHz to 45 kHz. From borehole temperature measurements, we know the thermal state of these sites during our SIP soundings, i.e., an active layer thickness of about 4 m at the Schilthorn field site. In order to understand and to calibrate ice and temperature relationships, the electrical impedance was likewise measured on water-saturated soil and rock samples from these field sites in a frequency range from 10 mHz to 45 kHz during controlled freeze-thaw cycles (+20°C to -40°C) in the laboratory.</p><p>For field and laboratory measurements, the resistance (impedance magnitude) shows a similar temperature dependence, with increasing resistance for decreasing temperatures. For each sample, the impedance phase spectra exhibit the well-known temperature-dependent relaxation behavior of ice at higher frequencies (1 kHz - 45 kHz), with an increasing polarization magnitude for lower temperatures or larger depths of investigation, respectively. At lower frequencies (1 Hz - 1 kHz), a polarization with a low frequency dependence is observed in the unfrozen state of the samples. We interpret this response as membrane polarization, considering that it decreases in magnitude with decreasing temperature (i.e., with ongoing freezing).</p><p>Using the independently measured borehole temperature data, a systematic comparison of the SIP laboratory and field measurements indicates the possibility of a thermal characterization of an alpine permafrost site using SIP.</p>

2021 ◽  
Author(s):  
Jonas K. Limbrock ◽  
Maximilian Weigand ◽  
Andreas Kemna

<p>Geoelectrical methods are increasingly being used for non-invasive characterization and monitoring of permafrost sites, since the electrical properties are sensitive to the phase change of liquid to frozen water. Here, electrical resistivity tomography (ERT) is most commonly applied, using resistivity as a proxy for various quantities, such as temperature or ice content. However, it is still challenging to distinguish between air and ice in the pore space of the rock based on resistivity alone due to their similarly low electrical conductivity. Meanwhile, geoelectrical methods that utilize electrical polarization effects to characterize permafrost are also being explored. For example, the usage of the spectral induced polarization (SIP) method, in which the complex, frequency-dependent impedance is measured, can reduce ambiguities in the subsurface conduction properties, considering the SIP signature of ice. These measurements seem to be suitable for the quantification of ice content (and thus the differentiation of ice and air), and for the improved thermal characterization of alpine permafrost sites. However, to improve the interpretation of SIP measurements, it is necessary to understand in more detail the electrical conduction and polarization properties as a function of temperature, ice content, texture, and mineralogy under frozen and partially frozen conditions.</p><p>In the study presented here, electrical impedance was measured continuously using SIP in the frequency range of 10 mHz to 45 kHz on various water-saturated solid rock and loose sediment samples during controlled freeze-thaw cycles (+20°C to -40°C). These measurements were performed on rock samples from different alpine permafrost sites with different mineralogical compositions and textures. For all samples, the resistance (impedance magnitude) shows a similar temperature dependence, with increasing resistance for decreasing temperature. Also, hysteresis between freezing and thawing behavior is observed for all measurements. During freezing, a jump within the temperature-dependent resistance is observed, suggesting a lowering of the freezing point to a critical temperature where an abrupt transition from liquid water to ice occurs. During thawing, on the other hand, there is a continuous decrease in the measured resistance, suggesting a continuous thawing of the sample. The spectra of impedance phase, which is a measure for the polarization, exhibit the same qualitative, well-known temperature-dependent relaxation behaviour of ice at higher frequencies (1 kHz - 45 kHz), with variations in shape and strength for different rock texture and mineralogy. At lower frequencies (1 Hz - 1 kHz), a polarization with a weak frequency dependence is observed in the unfrozen state of the samples. We interpret this response as membrane polarization, which likewise depends on the texture as well as on the mineralogy of the respective sample. This polarization response partially vanishes during freezing. Overall, the investigated SIP spectra do not only show a dependence on texture and mineralogy, but mainly a dependence on the presence of ice in the sample as well as temperature. This indicates the possibility of a thermal characterization, as well as a determination of the ice content, of permafrost rocks using SIP.</p>


Solid Earth ◽  
2014 ◽  
Vol 5 (2) ◽  
pp. 721-739 ◽  
Author(s):  
M. A. de Pablo ◽  
M. Ramos ◽  
A. Molina

Abstract. The Limnopolar Lake site (A25), of the Circumpolar Active Layer Monitoring-South network (CALM-S), is located on Byers Peninsula, where the active layer thickness is monitored systematically (by mechanical probing during the thawing season and by temperature devices continuously since 2009). Air, surface, snow and ground temperature devices have been installed to monitor ground thermal behavior, which is presented and characterized here. We use the air and ground mean daily temperature values to define the following parameters: maximum, minimum and mean temperatures, the zero annual thermal amplitude, and the depth and position of the top of the permafrost table. The freezing and thawing seasons (defining their starting dates as well as their length) and the existence of zero curtain periods have also been established. We also derive apparent thermal diffusivity and plot thermograms to study the thermal behavior of the ground at different depths and seasons. After this complete thermal characterization of the active layer, we propose the potential existence of a permafrost table at approximately 130 cm in depth as well as a former transitional layer above it, and discuss the role of water in connection with the thermal behavior of the ground during the study period.


2014 ◽  
Vol 6 (1) ◽  
pp. 679-729 ◽  
Author(s):  
M. A. de Pablo ◽  
M. Ramos ◽  
A. Molina

Abstract. The Limnopolar Lake CALM-S site (A25) is the unique location on Byers peninsula where the active layer thickness is systematically monitorized (by mechanical probing during the thaw season and by temperature devices continuously since 2009). An air, surface, snow and ground temperature monitoring devices have been installed to monitor ground thermal behavior. We analyzed these data to present there the active layer thermal characterization. We use the air and ground mean daily temperature data to define the following parameters: maximum, minimum and mean temperatures at the air and at different depths, the zero annual thermal amplitude depths and position of the top of the permafrost table. The freezing and thawing seasons (defining their starting dates as well as their length), and the existence of zero curtain periods has been also established. We also derive apparent thermal diffusivity and plot thermograms to study the thermal behavior of the ground at different depths. After this complete thermal characterization of the active layer, we propose the potential existence of a~permafrost table at about 130 cm in depth as well as the transitional zone above it, and discuss the role of water in connection with the thermal behavior of the ground during the study period.


2021 ◽  
Author(s):  
Theresa Maierhofer ◽  
Jonas K. Limbrock ◽  
Timea Katona ◽  
Elisabetta Drigo ◽  
Christin Hilbich ◽  
...  

<p>Warming of permafrost regions with an associated increase in subsurface temperatures has been reported worldwide. Thus, long-term monitoring of the thermal state of permafrost and the associated ground ice contents has become an essential task also for the European Alps. Geophysical methods have proven to be well-suited to support and interconnect spatially sparse borehole data and investigate the distribution and temporal evolution of permafrost. In particular, electrical resistivity tomography (ERT) is a widely applied technique for permafrost characterization, commonly associated with a significant increase in the electrical resistivity upon freezing. However, air is also characterized by high electrical resistivity values complicating the interpretation of ERT results. Recent studies have revealed that the spectral induced polarization (SIP) response of frozen rocks is affected by the temperature-dependent polarization behaviour of ice at higher frequencies. Thus, the SIP or complex resistivity method offers potential for an improved characterization of permafrost sites.</p><p>We here present SIP imaging results conducted over a broad range of frequencies (0.1-225 Hz) at an operational long-term permafrost monitoring site covering a period of one and a half years. The selected study area Cervinia Cime Bianche (Italian Alps) is situated at an elevation of ~3100m and provides comprehensive geophysical, borehole temperature and water content data for validation. Shielded cables and an adequate measuring protocol were deployed to minimize the electromagnetic coupling in the SIP data. Data were collected as normal and reciprocal pairs for the quantification of data error, and we developed an analysis scheme for data quality that considers changes in time and in the frequency to remove spatial and temporal outliers and erroneous measurements. To understand the temperature dependence of the polarization response, we compare our field results with SIP laboratory measurements on water-saturated rock samples, collected in close proximity to the monitoring profile, in a frequency range of 10 mHz to 45 kHz during controlled freeze-thaw cycles (+20°C to -40°C).</p><p>Our field results show clear seasonal changes in the complex resistivity images. Resistivity magnitude shows an increase in winter and decrease in summer throughout the image plane, with most prominent changes at shallow depths, where also resistivity phase shows distinctly increased (absolute) values in winter for frequencies above 10 Hz. This region coincides with the active layer as monitored by borehole temperature logging, suggesting that especially the polarization response is indicative of the seasonal freezing and thawing of the ground. This interpretation is confirmed by the laboratory measurements on the rock samples from the site, which upon freezing and thawing exhibit an absolute phase increase with decreasing temperature at higher frequencies (above 10 Hz for temperatures down to -10°C), with the general spectral behaviour being consistent with the known polarization properties of ice. We conclude that with appropriate measurement and processing procedures, the characteristic dependence of the SIP response of frozen rocks on temperature, and thus ice content, can be utilized in field surveys for an improved assessment of thermal state and ice content at permafrost sites.</p>


1999 ◽  
Vol 6 (1) ◽  
pp. 101-108 ◽  
Author(s):  
E. Delacre ◽  
D. Defer ◽  
E. Antczak ◽  
B. Duthoit

2005 ◽  
Vol 125 ◽  
pp. 177-180
Author(s):  
T. Lopez ◽  
M. Picquart ◽  
G. Aguirre ◽  
Y. Freile ◽  
D. H. Aguilar ◽  
...  

2018 ◽  
Vol 1 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Kamaljit Singh Boparai ◽  
Rupinder Singh

This study highlights the thermal characterization of ABS-Graphene blended three dimensional (3D) printed functional prototypes by fused deposition modeling (FDM) process. These functional prototypes have some applications as electro-chemical energy storage devices (EESD). Initially, the suitability of ABS-Graphene composite material for FDM applications has been examined by melt flow index (MFI) test. After establishing MFI, the feedstock filament for FDM has been prepared by an extrusion process. The fabricated filament has been used for printing 3D functional prototypes for printing of in-house EESD. The differential scanning calorimeter (DSC) analysis was conducted to understand the effect on glass transition temperature with the inclusion of Graphene (Gr) particles. It has been observed that the reinforced Gr particles act as a thermal reservoir (sink) and enhances its thermal/electrical conductivity. Also, FT-IR spectra realized the structural changes with the inclusion of Gr in ABS matrix. The results are supported by scanning electron microscopy (SEM) based micrographs for understanding the morphological changes.


Sign in / Sign up

Export Citation Format

Share Document