Seasonal and annual dynamics of frozen ground at a mountain permafrost site in the Italian Alps detected by spectral induced polarization

Author(s):  
Theresa Maierhofer ◽  
Jonas K. Limbrock ◽  
Timea Katona ◽  
Elisabetta Drigo ◽  
Christin Hilbich ◽  
...  

<p>Warming of permafrost regions with an associated increase in subsurface temperatures has been reported worldwide. Thus, long-term monitoring of the thermal state of permafrost and the associated ground ice contents has become an essential task also for the European Alps. Geophysical methods have proven to be well-suited to support and interconnect spatially sparse borehole data and investigate the distribution and temporal evolution of permafrost. In particular, electrical resistivity tomography (ERT) is a widely applied technique for permafrost characterization, commonly associated with a significant increase in the electrical resistivity upon freezing. However, air is also characterized by high electrical resistivity values complicating the interpretation of ERT results. Recent studies have revealed that the spectral induced polarization (SIP) response of frozen rocks is affected by the temperature-dependent polarization behaviour of ice at higher frequencies. Thus, the SIP or complex resistivity method offers potential for an improved characterization of permafrost sites.</p><p>We here present SIP imaging results conducted over a broad range of frequencies (0.1-225 Hz) at an operational long-term permafrost monitoring site covering a period of one and a half years. The selected study area Cervinia Cime Bianche (Italian Alps) is situated at an elevation of ~3100m and provides comprehensive geophysical, borehole temperature and water content data for validation. Shielded cables and an adequate measuring protocol were deployed to minimize the electromagnetic coupling in the SIP data. Data were collected as normal and reciprocal pairs for the quantification of data error, and we developed an analysis scheme for data quality that considers changes in time and in the frequency to remove spatial and temporal outliers and erroneous measurements. To understand the temperature dependence of the polarization response, we compare our field results with SIP laboratory measurements on water-saturated rock samples, collected in close proximity to the monitoring profile, in a frequency range of 10 mHz to 45 kHz during controlled freeze-thaw cycles (+20°C to -40°C).</p><p>Our field results show clear seasonal changes in the complex resistivity images. Resistivity magnitude shows an increase in winter and decrease in summer throughout the image plane, with most prominent changes at shallow depths, where also resistivity phase shows distinctly increased (absolute) values in winter for frequencies above 10 Hz. This region coincides with the active layer as monitored by borehole temperature logging, suggesting that especially the polarization response is indicative of the seasonal freezing and thawing of the ground. This interpretation is confirmed by the laboratory measurements on the rock samples from the site, which upon freezing and thawing exhibit an absolute phase increase with decreasing temperature at higher frequencies (above 10 Hz for temperatures down to -10°C), with the general spectral behaviour being consistent with the known polarization properties of ice. We conclude that with appropriate measurement and processing procedures, the characteristic dependence of the SIP response of frozen rocks on temperature, and thus ice content, can be utilized in field surveys for an improved assessment of thermal state and ice content at permafrost sites.</p>

2020 ◽  
Author(s):  
Jonas K. Limbrock ◽  
Maximilian Weigand ◽  
Andreas Kemna

<p>Geoelectrical methods are increasingly used for non-invasive characterization and monitoring of permafrost sites, since the electrical properties of the subsoil are sensitive to the phase change of liquid to frozen water. In this context, electrical subsurface parameters act as proxies for temperature and ice content.  However, it is still challenging to distinguish between air and ice in the pore space of the rock based on the resistivity method alone due to their similarly low electrical conductivity. This ambiguity in the subsurface conduction properties can be reduced by considering the spectral electrical polarization signature of ice using the Spectral Induced Polarization (SIP) method, in which the complex, frequency-dependent impedance is measured. These measurements are hypothesized to allowing for the quantification of ice content (and thus differentiation of ice and air), and for the improved thermal characterization of alpine permafrost sites.</p><p>In the present study, vertical SIP sounding measurements have been made at different alpine permafrost sites in a frequency range from 100 mHz to 45 kHz. From borehole temperature measurements, we know the thermal state of these sites during our SIP soundings, i.e., an active layer thickness of about 4 m at the Schilthorn field site. In order to understand and to calibrate ice and temperature relationships, the electrical impedance was likewise measured on water-saturated soil and rock samples from these field sites in a frequency range from 10 mHz to 45 kHz during controlled freeze-thaw cycles (+20°C to -40°C) in the laboratory.</p><p>For field and laboratory measurements, the resistance (impedance magnitude) shows a similar temperature dependence, with increasing resistance for decreasing temperatures. For each sample, the impedance phase spectra exhibit the well-known temperature-dependent relaxation behavior of ice at higher frequencies (1 kHz - 45 kHz), with an increasing polarization magnitude for lower temperatures or larger depths of investigation, respectively. At lower frequencies (1 Hz - 1 kHz), a polarization with a low frequency dependence is observed in the unfrozen state of the samples. We interpret this response as membrane polarization, considering that it decreases in magnitude with decreasing temperature (i.e., with ongoing freezing).</p><p>Using the independently measured borehole temperature data, a systematic comparison of the SIP laboratory and field measurements indicates the possibility of a thermal characterization of an alpine permafrost site using SIP.</p>


2020 ◽  
Author(s):  
Christian Hauck ◽  
Christin Hilbich ◽  
Coline Mollaret ◽  
Cécile Pellet

<p>Geophysical methods and especially electrical techniques have been used for permafrost detection and monitoring since more than 50 years. In the beginning, the use of Vertical Electrical Soundings (VES) allowed the detection of ice-rich permafrost due to the clear contrast between the comparatively low-resistive active layer and the high-resistive permafrost layer below. Only after the development of 2-dimensional tomographic measurement and processing techniques (Electrical Resistivity Tomography, ERT), in the late 1990’s, electrical imaging was widely applied for a large range of different permafrost applications, including ice content quantification and permafrost monitoring over different spatial scales. Regarding ERT monitoring, the comparatively large efforts needed for continuous and long-term measurements implies that there are still only few continuous ERT monitoring installations in permafrost terrain worldwide. One of the exceptions is a network of six permafrost sites in the Swiss Alps that have been constantly monitored in the context of the Swiss Permafrost Monitoring Network (PERMOS) since 2005, enabling the analysis of the long-term change in the ground ice content and associated thawing and freezing processes (Mollaret et al. 2019).</p><p>On the contrary, a much larger number (estimated to be > 500) of permafrost sites exist worldwide, where singular ERT (or VES) measurements have been performed in the past - many of them published in the scientific literature. These data sets are neither included in a joint database nor have they been analysed in an integrated way. Within a newly GCOS Switzerland-funded project we address this important historical data source. Whereas singular ERT data from different permafrost occurrences are not easily comparable due to the local influence of the geologic material on the obtained electrical resistivities, their use as baseline for repeated measurements and subsequent processing and interpretation in a climatic context is highly promising and can be effectuated with low efforts.</p><p>In this presentation we will show evidence that singular ERT surveys in permafrost terrain can indeed be repeated and jointly processed after long time spans of up to 20 years, yielding a climate signal of permafrost change at various sites and on different landforms. Examples are given from various field sites in Europe and Antarctica, and the results are validated with borehole data, where available. We believe that a joint international data base of historical ERT surveys and their repetitions would add an important data source available for permafrost studies in the context of climate change.</p><p> </p><p>Mollaret, C., Hilbich, C., Pellet, C., Flores-Orozco, A., Delaloye, R. and Hauck, C. (2019): Mountain permafrost degradation documented through a network of permanent electrical resistivity tomography sites. The Cryosphere, 13 (10), 2557-2578.</p>


1998 ◽  
Vol 35 (2) ◽  
pp. 234-250 ◽  
Author(s):  
JF (Derick) Nixon ◽  
Nick Holl

A geothermal model is described that simulates simultaneous deposition, freezing, and thawing of mine tailings or sequentially placed layers of embankment soil. When layers of soil or mine tailings are placed during winter subfreezing conditions, frozen layers are formed in the soil profile that may persist with time. The following summer, warmer soil placement may not be sufficient to thaw out layers from the preceding winter. Remnant frozen soil layers may persist for many years or decades. The analysis is unique, as it involves a moving upper boundary and different surface snow cover functions applied in winter time. The model is calibrated based on two uranium mines in northern Saskatchewan. The Rabbit Lake scenario involves tailings growth to a height of 120 m over a period of 24 years. At Key Lake, tailings increase in height at a rate of 1.3 m/year. Good agreement between the observed position of frozen layers and those predicted by the model is obtained. Long-term predictions indicate that from 80 to 200 years would be required to thaw out the frozen layers formed during placement, assuming 1992 placement conditions continue. Deposition rates of 1.5-3 m/year give the largest amounts of frozen ground. The amount of frozen ground is sensitive to the assumed snow cover function during winter.Key words: geothermal, model, tailings, freezing, deposition.


2011 ◽  
Vol 28 (12) ◽  
pp. 1157-1165 ◽  
Author(s):  
Christiani A. Amorim ◽  
Anu David ◽  
Marie-Madeleine Dolmans ◽  
Alessandra Camboni ◽  
Jacques Donnez ◽  
...  

Author(s):  
Venkatesan B ◽  
Kannan V ◽  
Sophia M

This paper aims to assess the mechanical and long-term durability performance of Reactive Powder Concrete (RPC) containing Granite Powder (GrP) as cement replacement and waste Glass Powder (GP) as quartz sand replacement. The workability and mechanical behaviour of RPC containing various proportions of GrP and GP are assessed for different w/b ratios (0.3, 0.35, 0.4 and 0.45). The water resistance and tightness of RPC are measured by monitoring the electrical resistivity, water absorption, sorptivity and chloride migration over a one year period. Results reveal that substitution of GrP and GP at optimum levels of 15% and 30% respectively enhances the performance of RPC with the achievement of satisfiable workability at a 0.35 w/b ratio. A significant increase in the resistance towards chloride penetration and electrical resistivity was also observed with increasing ages. Thus, glass powder and granite powder can be considered as alternative construction materials providing economical and ecological efficiency.


2011 ◽  
Vol 11 (12) ◽  
pp. 5701-5717 ◽  
Author(s):  
J. Fiedler ◽  
G. Baumgarten ◽  
U. Berger ◽  
P. Hoffmann ◽  
N. Kaifler ◽  
...  

Abstract. Noctilucent clouds (NLC) have been measured by the Rayleigh/Mie/Raman-lidar at the ALOMAR research facility in Northern Norway (69° N, 16° E). From 1997 to 2010 NLC were detected during more than 1850 h on 440 different days. Colocated MF-radar measurements and calculations with the Leibniz-Institute Middle Atmosphere (LIMA-) model are used to characterize the background atmosphere. Temperatures as well as horizontal winds at 83 km altitude show distinct differences during NLC observations compared to when NLC are absent. The seasonally averaged temperature is lower and the winds are stronger westward when NLC are detected. The wind separation is a robust feature as it shows up in measurements as well as in model results and it is consistent with the current understanding that lower temperatures support the existence of ice particles. For the whole 14-year data set there is no statistically significant relation between NLC occurrence and solar Lyman-α radiation. On the other hand NLC occurrence and temperatures at 83 km show a significant anti-correlation, which suggests that the thermal state plays a major role for the existence of ice particles and dominates the pure Lyman-α influence on water vapor during certain years. We find the seasonal mean NLC altitudes to be correlated to both Lyman-α radiation and temperature. NLC above ALOMAR are strongly influenced by atmospheric tides. The cloud water content varies by a factor of 2.8 over the diurnal cycle. Diurnal and semidiurnal amplitudes and phases show some pronounced year-to-year variations. In general, amplitudes as well as phases vary in a different manner. Amplitudes change by a factor of more than 3 and phases vary by up to 7 h. Such variability could impact long-term NLC observations which do not cover the full diurnal cycle.


2005 ◽  
Vol 29 (2) ◽  
pp. 907-911 ◽  
Author(s):  
Marco Cantonati ◽  
Ermanno Bertuzzi ◽  
Reinhard Gerecke ◽  
Karin Ortler ◽  
Daniel Spitale

2010 ◽  
Vol 6 (S276) ◽  
pp. 525-526
Author(s):  
Mario Damasso ◽  
Andrea Bernagozzi ◽  
Enzo Bertolini ◽  
Paolo Calcidese ◽  
Paolo Giacobbe ◽  
...  

AbstractSmall ground-based telescopes can effectively be used to look for transiting rocky planets around nearby low-mass M stars, as recently demonstrated for example by the MEarth project. Since December 2009 at the Astronomical Observatory of the Autonomous Region of Aosta Valley (OAVdA) we are monitoring photometrically a sample of red dwarfs with accurate parallax measurements. The primary goal of this ‘pilot study’ is the characterization of the photometric microvariability of each target over a typical period of approximately 2 months. This is the preparatory step to long-term survey with an array of identical small telescopes, with kick-off in early 2011. Here we discuss the present status of the study, describing the stellar sample, and presenting the most interesting results obtained so far, including the aggressive data analysis devoted to the characterization of the variability properties of the sample and the search for transit-like signals.


Sign in / Sign up

Export Citation Format

Share Document