Textural and mineralogical controls on temperature dependent SIP behavior during freezing and thawing

Author(s):  
Jonas K. Limbrock ◽  
Maximilian Weigand ◽  
Andreas Kemna

<p>Geoelectrical methods are increasingly being used for non-invasive characterization and monitoring of permafrost sites, since the electrical properties are sensitive to the phase change of liquid to frozen water. Here, electrical resistivity tomography (ERT) is most commonly applied, using resistivity as a proxy for various quantities, such as temperature or ice content. However, it is still challenging to distinguish between air and ice in the pore space of the rock based on resistivity alone due to their similarly low electrical conductivity. Meanwhile, geoelectrical methods that utilize electrical polarization effects to characterize permafrost are also being explored. For example, the usage of the spectral induced polarization (SIP) method, in which the complex, frequency-dependent impedance is measured, can reduce ambiguities in the subsurface conduction properties, considering the SIP signature of ice. These measurements seem to be suitable for the quantification of ice content (and thus the differentiation of ice and air), and for the improved thermal characterization of alpine permafrost sites. However, to improve the interpretation of SIP measurements, it is necessary to understand in more detail the electrical conduction and polarization properties as a function of temperature, ice content, texture, and mineralogy under frozen and partially frozen conditions.</p><p>In the study presented here, electrical impedance was measured continuously using SIP in the frequency range of 10 mHz to 45 kHz on various water-saturated solid rock and loose sediment samples during controlled freeze-thaw cycles (+20°C to -40°C). These measurements were performed on rock samples from different alpine permafrost sites with different mineralogical compositions and textures. For all samples, the resistance (impedance magnitude) shows a similar temperature dependence, with increasing resistance for decreasing temperature. Also, hysteresis between freezing and thawing behavior is observed for all measurements. During freezing, a jump within the temperature-dependent resistance is observed, suggesting a lowering of the freezing point to a critical temperature where an abrupt transition from liquid water to ice occurs. During thawing, on the other hand, there is a continuous decrease in the measured resistance, suggesting a continuous thawing of the sample. The spectra of impedance phase, which is a measure for the polarization, exhibit the same qualitative, well-known temperature-dependent relaxation behaviour of ice at higher frequencies (1 kHz - 45 kHz), with variations in shape and strength for different rock texture and mineralogy. At lower frequencies (1 Hz - 1 kHz), a polarization with a weak frequency dependence is observed in the unfrozen state of the samples. We interpret this response as membrane polarization, which likewise depends on the texture as well as on the mineralogy of the respective sample. This polarization response partially vanishes during freezing. Overall, the investigated SIP spectra do not only show a dependence on texture and mineralogy, but mainly a dependence on the presence of ice in the sample as well as temperature. This indicates the possibility of a thermal characterization, as well as a determination of the ice content, of permafrost rocks using SIP.</p>

2020 ◽  
Author(s):  
Jonas K. Limbrock ◽  
Maximilian Weigand ◽  
Andreas Kemna

<p>Geoelectrical methods are increasingly used for non-invasive characterization and monitoring of permafrost sites, since the electrical properties of the subsoil are sensitive to the phase change of liquid to frozen water. In this context, electrical subsurface parameters act as proxies for temperature and ice content.  However, it is still challenging to distinguish between air and ice in the pore space of the rock based on the resistivity method alone due to their similarly low electrical conductivity. This ambiguity in the subsurface conduction properties can be reduced by considering the spectral electrical polarization signature of ice using the Spectral Induced Polarization (SIP) method, in which the complex, frequency-dependent impedance is measured. These measurements are hypothesized to allowing for the quantification of ice content (and thus differentiation of ice and air), and for the improved thermal characterization of alpine permafrost sites.</p><p>In the present study, vertical SIP sounding measurements have been made at different alpine permafrost sites in a frequency range from 100 mHz to 45 kHz. From borehole temperature measurements, we know the thermal state of these sites during our SIP soundings, i.e., an active layer thickness of about 4 m at the Schilthorn field site. In order to understand and to calibrate ice and temperature relationships, the electrical impedance was likewise measured on water-saturated soil and rock samples from these field sites in a frequency range from 10 mHz to 45 kHz during controlled freeze-thaw cycles (+20°C to -40°C) in the laboratory.</p><p>For field and laboratory measurements, the resistance (impedance magnitude) shows a similar temperature dependence, with increasing resistance for decreasing temperatures. For each sample, the impedance phase spectra exhibit the well-known temperature-dependent relaxation behavior of ice at higher frequencies (1 kHz - 45 kHz), with an increasing polarization magnitude for lower temperatures or larger depths of investigation, respectively. At lower frequencies (1 Hz - 1 kHz), a polarization with a low frequency dependence is observed in the unfrozen state of the samples. We interpret this response as membrane polarization, considering that it decreases in magnitude with decreasing temperature (i.e., with ongoing freezing).</p><p>Using the independently measured borehole temperature data, a systematic comparison of the SIP laboratory and field measurements indicates the possibility of a thermal characterization of an alpine permafrost site using SIP.</p>


2018 ◽  
Vol 212 ◽  
pp. 01013
Author(s):  
Vadim Balabanov ◽  
Victor Baryshok ◽  
Nikita Epishkin

The sharply continental climate of the Irkutsk region is characterized by wide temperature intervals throughout the year. The repeated cyclicity of freezing and thawing of building materials in the water-saturated state influences the change in technical characteristics and the durability of concrete products and structures. The concrete products’ features in such climatic conditions create the need for the production of concretes with improved indicators of physical and mechanical properties. The effect of modifying additives on the technological characteristics of sulfur concrete is established. The effect of all elements of sulfur concrete on its strength and frost resistance. The composition of sulfuric concrete is obtained, which meets all the requirements and also has high strength and increased frost resistance. Formulations with a certain ratio of structural sulfuric concrete mixtures were developed. As a result of the use of technical sulfur in the composition of concrete products, the problem of utilizing annually accumulating reserves of technical sulfur is partially solved. The strength properties of sulfuric concretes easily compete with high-quality brands of concrete, special types of concretes that have in their composition additives.


2020 ◽  
Vol 174 ◽  
pp. 103060 ◽  
Author(s):  
Yuki Kojima ◽  
Yuta Nakano ◽  
Chihiro Kato ◽  
Kosuke Noborio ◽  
Kohji Kamiya ◽  
...  

1983 ◽  
Vol 61 (12) ◽  
pp. 3100-3106 ◽  
Author(s):  
P. E. R. O'Malley ◽  
J. A. Milburn

Xylem sap pressures in response to temperature changes were investigated in Acer pseudoplatanus L., the British sycamore. Mature trees were used for field experiments; excised seedling stem segments were used in the laboratory. A general correlation was observed between changes in pressure potential (ψp) of the xylem sap of mature trees and ambient temperatures above zero (freezing point). More outstanding, however, were the characteristic decreases in pressure potential observed in response to subzero air temperatures. Investigation of this phenomenon under controlled conditions using excised stem segments revealed that rapid decreases in sap pressure occurred simultaneously with freezing. Freezing caused the stem wood to absorb water. This is a surprising response because water expands on freezing. Subsequently exudation of sap was triggered by thawing. Freezing and thawing responses appeared to be similar whether stem segments were collected during summer, when the xylem sap contained no detectable sugars, or during winter, when sugars were present in the sap. Apparently water uptake or replenishment (termed "conditioning") during cooling is of paramount importance in determining the capability of maple wood to exude sap. The freeze-induced uptake of sap under negative pressures described here is considered to be the process fundamental to conditioning.


2010 ◽  
Vol 214 ◽  
pp. 012102 ◽  
Author(s):  
Jean-Luc Battaglia ◽  
Andrea Cappella ◽  
Enrico Varesi ◽  
Vincent Schick ◽  
Andrzej Kusiak ◽  
...  

1984 ◽  
Vol 21 (1) ◽  
pp. 19-24 ◽  
Author(s):  
M. S. King

Seismic-wave velocities have been measured on 37 unconsolidated permafrost samples as a function of temperature in the range -16 to +5 °C. The samples, taken from a number of locations in the Canadian Arctic islands, the Beaufort Sea, and the Mackenzie River valley, were tighty sealed immediately upon recovery in several layers of polyethylene film and maintained in their frozen state during storage, specimen preparation, and until they were tested under controlled environmental conditions. During testing, the specimens were subjected to a constant hydrostatic confining stress of 0.35 MPa (50 psi) under drained conditions. At no stage was a deviatoric stress applied to the permafrost specimens. The fraction of clay-sized particles in the test specimens varied from almost zero to approximately 65%. At temperatures below -2 °C the compressional-wave velocity was observed to be a strong function of the fraction of clay-sized particles, but only a weak function of porosity. At temperatures above 0 °C the compressional-wave velocity was observed to be a function only of porosity, with virtually no dependence upon the fraction of clay-sized particles. Calculation of the fractional ice content of the permafrost pore space from the Kuster and Toksöz theory showed that for a given fraction of clay-sized particles the ice content increases with an increase in porosity. It is concluded that the compressional-wave velocity for unconsolidated permafrost from the Canadian Arctic is a function of the water-filled porosity, irrespective of the original porosity, clay content, or temperature.


1986 ◽  
Vol 23 (5) ◽  
pp. 696-704 ◽  
Author(s):  
D. M. Gray ◽  
R. J. Granger

The paper presents the results of field studies on the movement of moisture and salts during freezing of Prairie soils. It is shown that large fluxes of water can migrate to the freezing front and move upward into the frozen soil above. The fluxes are largest in light-textured soils (e.g., silt loam) having a water table at shallow depth. However, substantial amounts of soil moisture may also move in silty clay, silty clay loam, and clay soils under dryland farming provided there is sufficient water present to support capillary flow.The dynamics of soil moisture transfer under natural conditions as a result of freezing involves movement of water in both vapor and liquid phases. In the shallow surface layer of soil, to a depth of 300–400 mm, vapor flow predominates; in the depth below, water usually moves primarily as a liquid. It is demonstrated that the accumulation of ice with time increases because of the downward movement of the freezing front and the upward movement of water into the frozen soil above. In a silt loam with large fluxes, the ice content of the frozen zone rapidly reaches a level (80–85% pore saturation) where measurable migration ceases. Conversely, in a silty clay the movement of moisture into the frozen soil is observed to continue throughout most of the freezing period, and the ice content reaches 93% pore saturation. The greater movement in the finer grained soil is attributed to a higher freezing-point depression, a larger number of capillary pores, and a higher concentration of soluble salts in the liquid films.A close association is observed between changes in the ice content and electrical conductivity of a silt loam after freezing. In a silty clay the agreement is less clear, probably the result of the exchange of ions between the migrating liquid water and the clay particles. Maximum amounts of exchangeable ions moving into a 1 m depth of soil by the freezing action are estimated to be 11.9 t/ha in a silt loam and 15.7 t/ha in a silty clay loam.Data showing the redistribution of water and salts during thawing are also presented and discussed.


2018 ◽  
Vol 91 ◽  
pp. 6-20
Author(s):  
E. B. Skvortsova ◽  
◽  
E. V. Shein ◽  
K. A. Romanenko ◽  
K. N. Abrosimov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document