Criteria of fault selection for geomechanical models

Author(s):  
Luisa Röckel ◽  
Steffen Ahlers ◽  
Sophia Morawietz ◽  
Karsten Reiter ◽  
Birgit Müller ◽  
...  

<p>Numerical modelling is an important method in the improvement of the understanding of a variety of geological processes such as the reactivation of faults and seismicity, orogeny or volcanism. Furthermore, it can be crucial for geotechnical activities such as geothermal use of the underground, oil and gas production or the use of dams. Geomechanical models enable stress predictions even in areas without stress data and can therefore greatly contribute to the long-term safety and productivity of underground activities.</p><p>As computational power is limited the geology of geomechanical models often needs to be simplified, especially for larger scale models. This is true not only for the resolution of the implemented stratigraphy but also for the implementation of faults as they severely increase the amount of required elements and influence the model stability. Furthermore, the implementation of faults often leads to artifacts and can therefore reduce the accuracy of the model results. Due to these limitations it is frequently necessary to distinguish between faults that are crucial for the model as they influence the stresses in magnitude and orientation on a large scale and faults that will only influence the model on a local scale and may therefore be neglected on a regional perspective. The impact of faults on a geomechanical model depends on various different factors such as geometry and mechanical properties of the fault itself, the tectonic regime or the scale of the model. As the relevance of a fault for a geomechanical model is not necessarily identical to its relevance in other geoscientific fields it can be challenging to identify relevant faults.</p><p>The SpannEnD project focuses on the generation of a 3-D geomechanical model of Germany and adjacent areas in the context of the disposal of nuclear waste in order to predict the tectonic stresses in areas without stress data. There is a multitude of faults known in the modelling area but due to their sheer amount not all faults can be incorporated. Criteria have to be found that drastically reduce the number of faults while keeping the change in the geomechanical stress pattern to a minimum. We will present different criteria that can be used for the fault selection which have being worked out in the framework of the SpannEnD project.</p>

2011 ◽  
Vol 44 (1) ◽  
pp. 10857-10862 ◽  
Author(s):  
Jorn F.M. Van Doren ◽  
Paul M.J. Van den Hof ◽  
Jan Dirk Jansen ◽  
Okko H. Bosgra

Author(s):  
Mark McDougall ◽  
Ken Williamson

Oil and gas production in Canada’s west has led to the need for a significant increase in pipeline capacity to reach export markets. Current proposals from major oil and gas transportation companies include numerous large diameter pipelines across the Rocky Mountains to port locations on the coast of British Columbia (BC), Canada. The large scale of these projects and the rugged terrain they cross lead to numerous challenges not typically faced with conventional cross-country pipelines across the plains. The logistics and access challenges faced by these mountain pipeline projects require significant pre-planning and assessment, to determine the timing, cost, regulatory and environmental impacts. The logistics of pipeline construction projects mainly encompasses the transportation of pipe and pipeline materials, construction equipment and supplies, and personnel from point of manufacture or point of supply to the right-of-way (ROW) or construction area. These logistics movement revolve around the available types of access routes and seasonal constraints. Pipeline contractors and logistics companies have vast experience in moving this type of large equipment, however regulatory constraints and environmental restrictions in some locations will lead to significant pre-planning, permitting and additional time and cost for material movement. In addition, seasonal constraints limit available transportation windows. The types of access vary greatly in mountain pipeline projects. In BC, the majority of off-highway roads and bridges were originally constructed for the forestry industry, which transports logs downhill whereas the pipeline industry transports large equipment and pipeline materials in both directions and specifically hauls pipe uphill. The capacity, current state and location of these off-highway roads must be assessed very early in the process to determine viability and/or potential options for construction access. Regulatory requirements, environmental restrictions, season of use restrictions and road design must all be considered when examining the use of or upgrade of existing access roads and bridges. These same restrictions are even more critical to the construction of new access roads and bridges. The logistics and access challenges facing the construction of large diameter mountain pipelines in Western Canada can be managed with proper and timely planning. The cost of the logistics and access required for construction of these proposed pipeline projects will typically be greater than for traditional pipelines, but the key constraint is the considerable time requirement to construct the required new access and pre-position the appropriate material to meet the construction schedule. The entire project team, including design engineers, construction and logistics planners, and material suppliers must be involved in the planning stages to ensure a cohesive strategy and schedule. This paper will present the typical challenges faced in access and logistics for large diameter mountain pipelines, and a process for developing a comprehensive plan for their execution.


Author(s):  
Trond G. Gru¨ner ◽  
Lars E. Bakken

The development of wet gas compressors will enable increased oil and gas production rates and enhanced profitable operation by subsea well-stream boosting. A more fundamental knowledge of the impact of liquid is essential with regard to the understanding of thermodynamic and fluid dynamic compressor behavior. An open-loop impeller test facility was designed to investigate the wet gas performance, aerodynamic stability, and operation range. The facility was made adaptable for different impeller and diffuser geometries. In this paper, the wet gas test facility and experimental work concerning the impact of wet gas on a representative full-scale industrial impeller are presented. The centrifugal compressor performance was examined at high gas volume fractions and atmospheric inlet conditions. Air and water were used as experimental fluids. Dry and wet gas performance was experimentally verified and analyzed. The results were in accordance with previous test data and indicated a stringent influence of the liquid phase. Air/water tests at atmospheric conditions were capable of reproducing the general performance trend of hydrocarbon wet gas compressor tests at high pressure.


Author(s):  
Kumarswamy Karpanan ◽  
Craig Hamilton-Smith

Subsea oil and gas production involves assemblies such as trees, manifolds, and pipelines that are installed on sea floor. Each of these components is exposed to severe working conditions throughout its operational life and is difficult and expensive to repair or retrieve installed. During installation and operation, a rig/platform and several supply vessels are stationed on the waterline directly above the well and installed equipment below. If any object is to be dropped overboard, it presents a hazard to the installed equipment. A subsea tree comprises of a number of critical components such as valves and hydraulic actuators, in addition to several electrical components such as the subsea control module and pressure/temperature gauges. Their ability to operate correctly is vital to the safe production of oil and gas. If an object were to impact and damage these components, resulting in their inability to operate as intended, the consequences could be severe. In this paper, a typical subsea tree frame is analyzed to ensure its ability to withstand the impact from an object accidentally dropped overboard. This was accomplished using nonlinear dynamic Finite Element Analysis (FEA). In this study, the framework was struck by a rigid body at terminal velocity, resulting in a given impact energy. Displacements and resultant strain values at critical locations were then compared to allowable limits to ensure compliance to the design requirements.


2019 ◽  
Vol 12 (3) ◽  
pp. 46-57 ◽  
Author(s):  
S. V. Kazantsev

The article presents the results of the author’s research of the impact of a wide range of restrictions and prohibitions applied to theRussian Federation, used by a number of countries for their geopolitical purposes and as a means of competition. The object of study was the impact of anti-Russian sanctions on the development of Oil & Gas industry and defence industry complex ofRussiain 2014–2016. The purpose of the analysis was to assess the impact of sanctions on the volume of oil and gas production, the dynamics of foreign earnings from the export of oil and gas, and of foreign earnings from the sale abroad of military and civilian products of the Russian defence industry complex (DIC). As the research method, the author used the economic analysis of the time series of statistical data presented in open statistics and literature. The author showed that some countries use the anti-Russian sanctions as a means of political, financial, economic, scientific, and technological struggle with the leadership ofRussiaand Russian economic entities. It is noteworthy that their introduction in 2014 coincided with the readiness of theUSto export gas and oil, which required a niche in the international energy market. The imposed sanctions have affected the volume of oil production inRussia, which was one of the factors of reduction of foreign earnings from the country’s oil and gas exports. However, the Russian defence industry complex has relatively well experienced the negative impact of sanctions and other non-market instruments of competition


Georesursy ◽  
2021 ◽  
Vol 23 (3) ◽  
pp. 8-16
Author(s):  
Danis K. Nurgaliev ◽  
Svetlana Yu. Selivanovskaya ◽  
Maria V. Kozhevnikova ◽  
Polina Yu. Galitskaya

This article discusses a possible scenario of energy transition in Russia, taking into account the economic structure, presence of huge oil and gas infrastructure and unique natural resources. All this allows to consider global trends of energy and economic decarbonization not only as a challenge, but also as a new opportunity for the country. Considering developed oil and gas production, transportation, refining and petrochemical infrastructure, as well as the vast territory, forest, water and soil resources, our country has unique opportunities for carbon sequestration using both biological systems and the existing oil and gas infrastructure. It is proposed to use the existing oil and gas production facilities for hydrogen generation in the processes of hydrocarbon catalytic transformation inside the reservoir. It is suggested to create and use large-scale technologies for CO2 sequestration using existing oil and gas production infrastructure. Considering high potential of the Russian Federation for carbon sequestration by biological systems, a network of Russian carbon testing areas is being developed, including one at Kazan Federal University (KFU), – the “Carbon-Povolzhye” testing area. The creation of carbon farms based on the applications at such testing areas could become a high-demand high-tech business. A detailed description of the KFU carbon testing area and its planned objectives are given.


Author(s):  
Shankar Sundararaman ◽  
Mark Cerkovnik ◽  
Luiza Ferreira ◽  
Phil Ward

Drilling and intervention risers are widely used for oil and gas production in deep as well as shallow waters in oil fields around the world for subsea operations. The risers come in a diverse array of configurations, some of which may be challenged by fatigue if operated in high currents or seastates. The suitability of the selected riser and the operating limits are assessed by conducting strength and fatigue analysis based on design codes such as API RP 2RD, [7], API RP 16Q, [9], and API RP 17G, [10]. Typically, drilling and intervention activities are conducted for short periods of time but used repetitively. The codes are clear about the return period of the design environmental event which must be checked to insure safe operation with respect to strength; however, assessment of fatigue integrity can be more difficult to determine. The allowable fatigue operating environment should account for the ability to disengage, the time required to disengage, the damage rates in particular seastates, prior accumulation of fatigue damage, and variations in soil, tension and internal fluid weights. In this paper, an orderly method of establishing the allowable fatigue operation limits for drilling and intervention risers is presented based on Monte Carlo simulations along with a case study implementing the methodology in a shallow water environment. To illustrate this concept, a riser with wellhead and conductor system is assessed and is subjected to directional loading from several long-term seastates. The variation in effects is studied by doing fatigue analysis for different durations: 3 days, 1 week, 3 months, 1 year and 10,000 hours.


Subject Prospects for the hydrocarbons sector under the new government Significance After three years of GDP contraction, a new government is pursuing increased foreign investment in hydrocarbons, to boost employment and growth and to repair the budget. In the long term, Greenland is likely to emerge as an international shipping, mining and hydrocarbons centre. For now, the fall in the international oil price has seen oil exploration stop. The wish for economic development is leading a new generation of Greenlandic politicians to embark on re-integration with the EU, where a ban on seal products is the greatest obstacle to closer ties. Impacts Infrastructure and climate challenges mean that full-scale oil and gas production is at least 15-20 years away. Emerging Greenland-China economic ties may create a new alignment in the opening up of the Arctic. A relaxation of the EU seal products ban would ease negotiations on Greenland's further integration with the bloc. Enhanced EU-Greenland ties could extend the EU's role in the Arctic.


Sign in / Sign up

Export Citation Format

Share Document