Establishing Operational Fatigue Limits for Short-Term Riser Operations

Author(s):  
Shankar Sundararaman ◽  
Mark Cerkovnik ◽  
Luiza Ferreira ◽  
Phil Ward

Drilling and intervention risers are widely used for oil and gas production in deep as well as shallow waters in oil fields around the world for subsea operations. The risers come in a diverse array of configurations, some of which may be challenged by fatigue if operated in high currents or seastates. The suitability of the selected riser and the operating limits are assessed by conducting strength and fatigue analysis based on design codes such as API RP 2RD, [7], API RP 16Q, [9], and API RP 17G, [10]. Typically, drilling and intervention activities are conducted for short periods of time but used repetitively. The codes are clear about the return period of the design environmental event which must be checked to insure safe operation with respect to strength; however, assessment of fatigue integrity can be more difficult to determine. The allowable fatigue operating environment should account for the ability to disengage, the time required to disengage, the damage rates in particular seastates, prior accumulation of fatigue damage, and variations in soil, tension and internal fluid weights. In this paper, an orderly method of establishing the allowable fatigue operation limits for drilling and intervention risers is presented based on Monte Carlo simulations along with a case study implementing the methodology in a shallow water environment. To illustrate this concept, a riser with wellhead and conductor system is assessed and is subjected to directional loading from several long-term seastates. The variation in effects is studied by doing fatigue analysis for different durations: 3 days, 1 week, 3 months, 1 year and 10,000 hours.

Author(s):  
Bessie A. Ribeiro ◽  
Viviane Rodrigues ◽  
Viviane Ferreira ◽  
Fabio C. Xavier ◽  
Theodoro A. Netto

The present work uses the BELLHOP ray tracing model to simulate an acoustic propagation channel in a deep water environment in order to analyze its viability to provide data transmission for monitoring submarine equipment. The simulated scenario is located in the Campos Basin, Rio de Janeiro, on the Brazilian coast, responsible for more than 80% of Brazilian oil and gas production. Temperature and salinity data from five stations were used to calculate the sound speed profiles required to the transmission loss simulations of the acoustic propagation channel. In order to estimate the signal detection capacity according to the medium characteristics, a characterization of the parameters that influence the physical propagation channel was performed. The parameters of three modem models with different operation frequencies were selected and analyzed in order to obtain the Signal to Noise Ratio (SNR) of the transmission signal.


Subject Prospects for the hydrocarbons sector under the new government Significance After three years of GDP contraction, a new government is pursuing increased foreign investment in hydrocarbons, to boost employment and growth and to repair the budget. In the long term, Greenland is likely to emerge as an international shipping, mining and hydrocarbons centre. For now, the fall in the international oil price has seen oil exploration stop. The wish for economic development is leading a new generation of Greenlandic politicians to embark on re-integration with the EU, where a ban on seal products is the greatest obstacle to closer ties. Impacts Infrastructure and climate challenges mean that full-scale oil and gas production is at least 15-20 years away. Emerging Greenland-China economic ties may create a new alignment in the opening up of the Arctic. A relaxation of the EU seal products ban would ease negotiations on Greenland's further integration with the bloc. Enhanced EU-Greenland ties could extend the EU's role in the Arctic.


2019 ◽  
Vol 59 (3) ◽  
Author(s):  
Nathan Fay

This year marks the golden jubilee of Australia’s offshore petroleum industry after the first gas was produced from Bass Strait by Esso and BHP’s Gippsland Basin Joint Venture. For half a century our industry has been driven by technology – pioneering technical excellence and pushing the envelope in the pursuit of much needed oil and gas production. Today, the landscape in East Australia is changing and gas is at the forefront of the discussion. Declines in East Australia’s historical conventional fields have seen gas supply tighten and prices rise. There is a strong need for additional affordable and reliable gas supply. While continued improvements in technology remain a critically important enabler in developing Australia’s gas resources; global supply and demand, regulatory frameworks, and the commercial arrangements that underpin new developments are becoming more and more important. ExxonMobil Australia’s new Chairman, Nathan Fay, has a wealth of experience working with gas markets around the world. He will explain why it is so important for policymakers to establishment a stable free market environment to encourage these long-term relationships. To view the video, click the link on the right.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 732
Author(s):  
Tatiana Farane Mein ◽  
André Luiz Veiga Gimenes ◽  
Eduardo Mario Dias ◽  
Maria Lídia Rebello Pinho Dias Scoton ◽  
Miguel Edgar Morales Udaeta

The objective of this work is to analyze disturbances in the environment caused by anthropic activities in the oil and gas extraction sector. Methodologically, focusing on environmental vulnerability (EV), hydrocarbons (oil and gas) are considered through a qualitative and quantitative analysis of environmental impacts, including the research of Environmental Impact Studies and procedures like EIA/RIMA (institutional Environmental Impact Reports in Brazil). This study focuses on the operation and demobilization of the offshore drilling activity and the installation and operation of the Santos Basin pre-salt oil and gas production (Stages 1, 2, and 3). The criteria addressed in the EIA/RIMAs are used, focusing on those that correlate with EV and oil and gas extraction. Impacts for long-term, permanent, partially reversible, or irreversible disturbances are filtered, totaling 53 impacts (31 effective/21 potential). We concluded that the criteria and methodologies of EIAs vary between stages. At times, the variation is so drastic that the same impact can have a completely different rating from one stage to another, despite referring to the same area. This condition makes it impossible to define a single vulnerability index for the pre-salt venture. This work does not offer a concrete resolution, but exposes the EV issue and its inconsistencies.


Author(s):  
Ahmad Sholikin

The Bojonegoro District Government took the initiative to establish the Bojonegoro Petroleum and Natural Gas (Oil and Gas) Endowment Fund. The establishment of this Oil and Gas Endowment Fund aims to ensure the existence of a saving fund for future generations when oil and gas and gas in the region has run out. This idea is in line with the fact that in the long term Bojonegoro will contribute significantly to domestic oil and gas production and also the fact that Bojonegoro has succeeded in alleviating poverty, in one area that was once considered the poorest district in Java. The establishment of the Oil and Gas Endowment Fund is also based on consideration of avoiding the curse of natural resources. Reflecting on the experience of regions rich in natural resources, including oil and gas resources, where the level of human welfare and development is lower than in areas of poor natural resources. The level of social conflict is quite high, environmental damage is quite severe, Dutch desiase, excessive spending (over spending), corruption thrives and more.


Author(s):  
Jian Su

Flow assurance is essential for economic and reliable production of oil and gas in deep water environment. The present paper discusses the complex physical phenomena involved in deep water production and the challenging engineering problems of flow assurance; and reviews recent works to understand the processes and tackle the problems. The following topics are discussed: flow regime transition, pressure drop, flow pattern, slug flow and severe slugging, transient multiphase flow, thermal insulation, insulation materials, active heating and wax deposition.


2020 ◽  
Author(s):  
Luisa Röckel ◽  
Steffen Ahlers ◽  
Sophia Morawietz ◽  
Karsten Reiter ◽  
Birgit Müller ◽  
...  

<p>Numerical modelling is an important method in the improvement of the understanding of a variety of geological processes such as the reactivation of faults and seismicity, orogeny or volcanism. Furthermore, it can be crucial for geotechnical activities such as geothermal use of the underground, oil and gas production or the use of dams. Geomechanical models enable stress predictions even in areas without stress data and can therefore greatly contribute to the long-term safety and productivity of underground activities.</p><p>As computational power is limited the geology of geomechanical models often needs to be simplified, especially for larger scale models. This is true not only for the resolution of the implemented stratigraphy but also for the implementation of faults as they severely increase the amount of required elements and influence the model stability. Furthermore, the implementation of faults often leads to artifacts and can therefore reduce the accuracy of the model results. Due to these limitations it is frequently necessary to distinguish between faults that are crucial for the model as they influence the stresses in magnitude and orientation on a large scale and faults that will only influence the model on a local scale and may therefore be neglected on a regional perspective. The impact of faults on a geomechanical model depends on various different factors such as geometry and mechanical properties of the fault itself, the tectonic regime or the scale of the model. As the relevance of a fault for a geomechanical model is not necessarily identical to its relevance in other geoscientific fields it can be challenging to identify relevant faults.</p><p>The SpannEnD project focuses on the generation of a 3-D geomechanical model of Germany and adjacent areas in the context of the disposal of nuclear waste in order to predict the tectonic stresses in areas without stress data. There is a multitude of faults known in the modelling area but due to their sheer amount not all faults can be incorporated. Criteria have to be found that drastically reduce the number of faults while keeping the change in the geomechanical stress pattern to a minimum. We will present different criteria that can be used for the fault selection which have being worked out in the framework of the SpannEnD project.</p>


Sign in / Sign up

Export Citation Format

Share Document