Retrieving paleopoles using newly mapped lunar magnetic anomalies within basins

Author(s):  
Joana S. Oliveira ◽  
Lon L. Hood

<p>Orbital spacecraft magnetic field observations show that several isolated magnetic anomalies are found to be heterogeneously distributed over the lunar surface. The magnetic anomalies origin is still debated; however, it is largely accepted that an ambient core magnetic field was present during their formation. Contrary to previous studies, here we focus only on anomalies that are related to basins/craters, which correspond to the best possibility to hold ancient core field information. In particular, the basin rocks become thermoremanently magnetized as the melt sheet cools down slowly recording the ambient magnetic field that was present when the crater was formed.</p><p>We build regional magnetic field maps using data from quiet orbits of Lunar Prospector and Kaguya spacecraft. When comparing these regional maps to existing global models, several differences and details are discovered. Further investigation is required to understand why small scales are missing from global models. For each mapped crater, we perform inversions for the magnetization direction to estimate the corresponding paleopole position (defined as the north magnetic pole when the anomaly formed). In detail, a grid of dipoles is placed over the basin inner depression, where the melt sheet is believed to be. All dipoles have the same common direction, nonetheless different dipole moments.</p><p>Preliminary results show that paleopole positions of regionally mapped anomalies associated with craters are not in absolute agreement with previous paleopole studies. Also of significance is the distribution of dipoles obtained, which seem to be consistent with inferred impactor trajectories. We conclude that paleopole position results are highly dependent on the technique and choices we make to construct the magnetic field maps. Further studies of several other craters will be performed, but we expect large differences when using regionally mapped anomalies. Our results will help to better constrain the lunar ancient core field morphology.</p>

Geophysics ◽  
2020 ◽  
Vol 85 (5) ◽  
pp. J85-J98
Author(s):  
Shuang Liu ◽  
Xiangyun Hu ◽  
Dalian Zhang ◽  
Bangshun Wei ◽  
Meixia Geng ◽  
...  

Natural remanent magnetization acts as a record of the previous orientations of the earth’s magnetic field, and it is an important feature when studying geologic phenomena. The so-called IDQ curve is used to describe the relationship between the inclination ( I) and declination ( D) of remanent magnetization and the Köenigsberger ratio ( Q). Here, we construct the IDQ curve using data on ground and airborne magnetic anomalies. The curve is devised using modified approaches for estimating the total magnetization direction, e.g., identifying the maximal position of minimal reduced-to-the-pole fields or identifying correlations between total and vertical reduced-to-the-pole field gradients. The method is tested using synthetic data, and the results indicate that the IDQ curve can provide valuable information on the remanent magnetization direction based on available data on the Köenigsberger ratio. Then, the method is used to interpret field data from the Yeshan region in eastern China, where ground anomalies have been produced by igneous rocks, including diorite and basalt, which occur along with magnetite and hematite ore bodies. The IDQ curves for 24 subanomalies are constructed, and these curves indicate two main distribution clusters of remanent magnetization directions corresponding to different structural units of magma intrusion and help identify the lithologies of the magnetic sources in areas covered by Quaternary sediments. The estimated remanent magnetization directions for Cenozoic basalt are consistent with measurements made in paleomagnetism studies. The synthetic and field data indicate that the IDQ curve can be used to efficiently estimate the remanent magnetization direction from a magnetic anomaly, which could help with our understanding of geologic processes in an area.


Geophysics ◽  
2020 ◽  
Vol 85 (4) ◽  
pp. J59-J70 ◽  
Author(s):  
Nelson Ribeiro-Filho ◽  
Rodrigo Bijani ◽  
Cosme Ponte-Neto

Knowledge of the total magnetization direction of geologic sources is valuable for interpretation of magnetic anomalies. Although the magnetization direction of causative sources is assumed to be induced by the ambient magnetic field, the presence of remanence should not be neglected. An existing method of correlating total and vertical gradients of the reduced-to-the-pole (RTP) anomaly estimates the total magnetization direction well. However, due to the numerical instability of RTP transformation in the Fourier domain, an assumption should be considered for dealing with inclination values at approximately 0°. We have adopted an extension to the standard crosscorrelation method for estimating the total magnetization direction vector, computing the RTP anomaly by means of the classic equivalent layer technique for low inclination values. Additionally, an ideal number of equivalent sources within the layer is considered for reducing the computational demands. To investigate the relevant aspects of the adopted method, two simple synthetic scenarios are presented. First, a magnetic anomaly produced by a homogeneous and isolated vertical dike is considered. This test illustrates the good performance of the adopted approach, finding the true magnetization direction, even for low inclination values. In the second synthetic test, a long-wavelength component is added to the previous magnetic total-field anomaly. In this case, the method adopted here fails to estimate a reliable magnetization direction vector, showing weak performance for strong interfering magnetic anomalies. On the real data example, the application tests an isolated total-field anomaly of the Carajás Mineral Province, in northern Brazil, where the inclination of the ambient magnetic field is close to zero. The obtained results indicate weak remanence in the estimated total magnetization direction vector, which would never be reached in the standard formulation of the crosscorrelation technique.


2020 ◽  
Author(s):  
Jan Deca ◽  
Douglas J. Hemingway ◽  
Andrey Divin ◽  
Charles Lue ◽  
Andrew R. Poppe ◽  
...  

<p>The Reiner Gamma swirl is one of the most prominent albedo features on the lunar surface. Its modest spatial scales and structure allows fully kinetic modelling. The region therefore presents a prime location to investigate the lunar albedo patterns and their co-location with magnetic anomalies. The precise relationship between the impinging plasma and the swirl, and in particular, how these interactions vary over the course of a lunar day, remains an open issue.</p><p>Here we use the fully kinetic particle-in-cell code,  iPIC3D, coupled with a magnetic field model based on Kaguya and Lunar Prospector observations, and simulate the interaction with the Reiner Gamma anomaly for all plasma regimes the region is exposed to along a typical orbit, including different solar wind incidence angles and the Moon's crossing through the terrestrial magnetosphere. We focus on the impact of the solar wind alpha population and construct energy and velocity distributions in key locations surrounding the interaction region of the anomaly.</p><p>The energy flux profile provides a better match to the albedo pattern only when integrating over the full lunar orbit. Including He<sup>2+</sup> as a self-consistent plasma species improves the brightness ratios between the inner and outer bright lobes, the dark lanes, and the mare background. However, substantial differences between the observed albedo pattern and the predicted flux remain.  For example, the bright outer lobes are substantially brighter than predicted and the central portion of the anomaly is darker than predicted. This is likely due to an incomplete model of the near-surface field structure.</p><p>Solar wind standoff can explain the large-scale correlation between the Reiner Gamma swirl and the co-located magnetic anomaly. In particular, the outer bright lobes emerge in the simulated weathering pattern only when integrating over the entire lunar orbit, although they are much weaker than observed. Both the proton and helium energy flux to the surface need to be taken into account to best reproduce the swirl pattern. A complete understanding of the solar wind interaction with lunar magnetic anomalies and swirl formation could be vastly improved by low altitude measurements of the magnetic field and solar wind.</p>


Author(s):  
B.В. Кузнецов

Северный магнитный полюс движется согласно модели дрейфа, предложенной канадским магнитологом Хоупом 1 и разработанной автором этой статьи 2, 3. В основе модели участие двух глобальных магнитных аномалий (ГМА): Канадской (КМА) и Сибирской (СМА). Вблизи этих ГМА расположены магнитные обсерватории: РезольютБей (RB Resolute Bay) в Канаде и Мыс Челюскин (CCh Cape Chelyskin) в России. Обсерватории регистрируют изменения величин Нкомпонент модуля геомагнитного поля (ГМП), причем в настоящее время в Канадском секторе регистрируется увеличение модуля ГМП, а в Сибирском, его уменьшение. Точка, в которой направленные навстречу векторы Нкомпонент равны друг другу, а Нкомпонента равна нулю, и есть СМП. Скорость дрейфа СМП определяется скоростью увеличения (или уменьшения) величин соответствующих ГМА. Использование этой простейшей схемы позволило автору давать очень точные прогнозы мест расположения СМП. Точно так же было определено время перехода СМП из Западного полушария в Восточное (лето 2019). Точность методики определяется исключительно точностью аппроксимации величины Нкомпонент 24. The North Magnetic Pole submits its moving to the drift model proposed by Canadian magnitologist Hope 5 and this developed by the author 6,7 which suggests an impact of two global magnetic anomalies (GMA), Canadian (CMA) and Siberian (SMA) into the pole drift. Magnetic observatories Resolute Bay, Canada, and Cape Chelyskin, Russia, located near these GMA, are recording the Hcomponent values. Nowadays increasing at the Canada area the geomagnetic field module is decreasing at the Siberia one. The NMP is the point where the vectors of Hcomponent directed towards each other are equal and the value of Hcomponent makes zero. The velocity of the NMP drift is determined by the fluctuating rate of GMA magnitudes. This technique enabled the author to predict as the NMP positions and the time of the NMP transit from the West hemisphere to the East one as 2019, summer. The technique accuracy is governed by accuracy of Hcomponent values approximation 6, 7, 13.


Radiocarbon ◽  
1986 ◽  
Vol 28 (2A) ◽  
pp. 266-278 ◽  
Author(s):  
Paul E Damon ◽  
Timothy W Linick

New Arizona high precision Δ14C data back to 6500 BC plot close to an 11,300-yr period sinusoid extrapolated from the post 5300 BC data (offset = +32‰, half amplitude = 51‰ and phase lag = 2.29 radians). The trend curve is modulated by high latitude components of the non-dipole field with a fundamental period of 2400 yr. Based upon a model of Lund and Banerjee (1985), the non-dipole field rotates and every 1200 yr the high latitude maxima pass over the north magnetic pole and near the south magnetic pole in reversed polarity. This modulates cosmic ray production producing extended maxima ca AD 1700, 700 bc, 3100 bc, and 5500 bc. The 2400 period appears to be stationary. The magnetic field also modulates the amplitude of the solar activity induced cycles of periods 200, 80, and 11 yr as can be seen in the Zürich-Bern Camp Century ice core data as well as in the Δ14 C fluctuation data. Reinterpretation of the Camp Century 10Be data indicates that it is in agreement with magnetic field as well as solar activity modulation of terrestrial radioisotope production.


2020 ◽  
Vol 196 ◽  
pp. 02020
Author(s):  
Nikolay Semakov ◽  
Aleksandr Kovalev ◽  
Anatoliy Pavlov ◽  
Olga Fedotova

The parameters of the equivalent central dipole calculated using hourly values of the magnetic field elements during 2011: the angular elements transformed to the hourly values of the geographic coordinates of the North magnetic pole and the intensity values transformed to local magnetic constant. Next step is the calculation of the daily mean values at every hour. This method applied to both current digital data and historical data presented as monthly tables of hourly values. The advantage of method is its ability to show the changes of the magnetic field independently from daily variation. Using of the “integrate” parameters (the magnetic pole coordinates and local magneto constant) allows detect the regional features of its variations. The features in the daily values compared with anomalous geological and geophysical events observed in the past and predicted in the near future.


2021 ◽  
Author(s):  
Valentina Galluzzi ◽  
Joana S. Oliveira ◽  
Jack Wright ◽  
David A. Rothery ◽  
Lon L. Hood

<p>In the last months of its mission, MESSENGER was able to obtain measurements at low altitude (< 120 km). This has made it possible to measure small magnetic field signals, probably of crustal origin (Johnson et al, 2015). Maps of the crust signatures at 40 km altitude were produced by Hood (2016) and Hood et al. (2018), showing that the strongest anomalies are about 9 nT in the Caloris basin. Some of the anomalies are associated with impact craters, and it has been demonstrated that this is not a coincidence (Hood et al., 2018). It is believed that these anomalies are the result of impactor materials rich in magnetic carriers (e.g., metallic iron) that were incorporated on the surface acquiring remanent magnetic fields during the cooling of the material. We analyzed whether the anomalies of the crustal field are related to geological characteristics by examining two Hermean craters in order to test this impactor hypothesis. Anomalies associated with Rustaveli and Stieglitz craters are slightly or totally asymmetric with respect to the crater center. The morphology and geological setting of these two fresh impact craters that still maintain a well-preserved ejecta blanket and visible secondary crater chains are investigated to constrain the overall impact dynamics. In both cases, slight asymmetries in the morphology and ejecta distribution show that the magnetic anomalies correlate well with the location of impact melt. Rustaveli is associated with a ~5 nT crustal magnetic anomaly centered close to the crater’s midpoint, although offset ~20 km east-southeast. This offset is somewhat consistent with the downrange direction implied by Rustaveli’s impact melt and crater chains distribution. For Stieglitz, an anomaly larger than 3 nT includes most of the ejecta melt locations towards southwest. The ejecta melt cluster to the north of the crater corresponds to an anomaly of ~5 nT, while the largest anomaly of ~7 nT is found further north and closely corresponds to the crater’s deepest chain. For both craters, the melt likely recorded the prevailing magnetic field of Mercury after quenching. Hence, both impactors brought magnetic carriers to the surface that could record the past magnetic field of Mercury.<em> Acknowledgments:</em> <em>The authors gratefully acknowledge funding from the Italian Space Agency (ASI) under ASI-INAF agreement 2017-47-H.0 and the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 776276.</em></p> <p>Hood, J. Geophys. Res. Planets 121, 2016;<br />Hood et al., J. Geophys. Res. Planets 123, 2018;<br />Johnson et al., Science 348, 2015.</p>


Geophysics ◽  
2018 ◽  
Vol 83 (6) ◽  
pp. J75-J85 ◽  
Author(s):  
Henglei Zhang ◽  
Dhananjay Ravat ◽  
Yára R. Marangoni ◽  
Guoxiong Chen ◽  
Xiangyun Hu

The knowledge of total magnetization (magnitude and direction) makes it easier to interpret magnetic anomalies. We have developed a simple crosscorrelation-based method to determine the total magnetization direction of a magnetic source from the vertical derivative of normalized source strength (dNSS) and the reduced-to-pole (RTP) magnetic fields. For most source types, the spread of the dNSS field (or its half-width) is similar to that of the RTP field computed with the correct total magnetization direction, and, thus, the comparison results in a more meaningful correlation coefficient than other functions used in the literature. We have determined the utility of our method using several compact source types (i.e., sphere, dike, horizontal sheet, vertical and horizontal cylinders, and prism). Moreover, the existing methods for determining the direction can be unstable at low latitudes due to noise amplification. A filter that isolates the main features of the anomaly of interest, when applied to both the fields being correlated, improves the performance of the method. We also implement a stabilizing amplitude threshold filter that made the method stable at low latitudes. Model tests indicate that our method estimates the total magnetization directions accurately for low inclinations of total magnetization and inducing field directions. We applied the method to estimate the total magnetization direction of magnetic anomalies in the north and central part of the Goiás Alkaline Province in central Brazil. The RTP fields from the total magnetization directions derived from our method meet the expectations of anomaly symmetry and centering on the outcrops or the edges of the alkaline intrusive bodies. In addition, we found that the resulting magnetic and gravity models of the Goiás Alkaline intrusives were consistent with the geologic model of inverted conical diatremes.


2020 ◽  
Author(s):  
Valentina Galluzzi ◽  
Joana S. Oliveira ◽  
Jack Wright ◽  
Lon L. Hood ◽  
David A. Rothery

<p>In the last months of its mission, MESSENGER was able to obtain measurements at low altitude (< 120 km). This has made it possible to measure small magnetic field signals, probably of crustal origin (Johnson et al, 2015). Maps of the crust signatures at 40 km altitude were produced by Hood (2016) and Hood et al. (2018), showing that the strongest anomalies are about 14 nT in the Caloris basin. Some of the anomalies are associated with impact craters, and it has been demonstrated that this is not a coincidence (Hood et al., 2018). It is believed that these anomalies are the result of impactor materials rich in magnetic carriers (e.g., metallic iron) that were incorporated on the surface acquiring remanent magnetic fields during the cooling of the material. We intend to analyze whether the anomalies of the crustal field are related to geological characteristics by examining two Hermean craters in order to test this impactor hypothesis. Anomalies associated with Rustaveli and Stieglitz craters are slightly or totally asymmetric with respect to the crater center. The morphology and geological setting of these two fresh impact craters that still maintain a well-preserved ejecta blanket and visible secondary crater chains are investigated to constrain the overall impact dynamics. Both impact angles were likely > 40°. In both cases, slight asymmetries in the morphology and ejecta distribution show that the magnetic anomalies correlate well with the location of impact melt. For the large basin Rustaveli, the melt emplaced SE in the downrange direction, whereas in the case of the smaller crater Stieglitz, downrange direction remains uncertain; in one scenario the melt naturally migrated to the northern topographic lows away from a SW downrange direction, while in the other the downrange direction corresponds to the location of the melt to the north. Rustaveli is associated with a ~5 nT crustal magnetic anomaly centered close to the crater’s midpoint, although offset ~20 km east-southeast. This offset is somewhat consistent with the downrange direction implied by Rustaveli’s impact melt and crater chains distribution. For Stieglitz, all anomalies are offset from the crater’s center. An anomaly larger than 3 nT includes most of the ejecta melt locations towards southwest. The ejecta melt cluster to the north of the crater corresponds to an anomaly of ~5 nT, while the largest anomaly of ~7 nT is found further north and closely corresponds to the crater’s deepest chain, making the second scenario of a N downrange direction more realistic. For both craters, the melt likely recorded the prevailing magnetic field of Mercury after quenching. For Stieglitz, also some solid impactor fragments likely contribute to the anomaly. Hence, both impactors brought magnetic carriers to the surface that could record the past magnetic field of Mercury.</p><p><br><em>Acknowledgements: The authors gratefully acknowledge funding from the Italian Space Agency (ASI) under ASI-INAF agreement 2017-47-H.0.</em></p><p>References: Hood, J. Geophys. Res. Planets 121, 2016; Hood et al., J. Geophys. Res. Planets 123, 2018; Johnson et al., Science 348, 2015.</p>


2000 ◽  
Vol 179 ◽  
pp. 193-196
Author(s):  
V. I. Makarov ◽  
A. G. Tlatov

AbstractA possible scenario of polar magnetic field reversal of the Sun during the Maunder Minimum (1645–1715) is discussed using data of magnetic field reversals of the Sun for 1880–1991 and the14Ccontent variations in the bi-annual rings of the pine-trees in 1600–1730 yrs.


Sign in / Sign up

Export Citation Format

Share Document