Recovered measurements of the 1960s stratospheric aerosol layer for new constraints for volcanic forcing in the years after 1963 Agung

Author(s):  
Graham Mann ◽  
Juan Carlos Antuna Marrero ◽  
Amanda Maycock ◽  
Christine McKenna ◽  
Sarah Shallcross ◽  
...  

<p>The WCRP-SPARC initiative on stratospheric sulphur (SSiRC) has begun a new activity to recover past observational datasets of the stratospheric aerosol layer.</p><p>The data rescue activity aims to provide additional constraints for volcanic impacts on climate and is organised into three time-periods:</p><ol><li>The quiescent period prior to the major eruption 1963 Agung eruption,</li> <li>The period of strong volcanic activity during 1963-1969,</li> <li>The Jul-Dec 1991 period after Pinatubo when the SAGE-II signal was saturated.</li> </ol><p>A new page within the SSiRC website gives further information on the datasets within this activity ( http://www.sparc-ssirc.org  --> Activities --> Data Rescue).</p><p>In this presentation, we explain the 1963-1969 component of the data rescue, and compare the CMIP5 and CMIP6 volcanic aerosol datasets during this period, post-Agung interactive stratospheric aerosol model simulations and a preliminary analysis of 15-year global-mean surface temperature trends from CMIP6 historical integrations for 1950-1980.</p><p>The 1960s was a strongly volcanically active decade, with the major 1963 Agung eruption and tropical stratosphere-injecting eruptions in 1965 (Taal), 1966 (Awu) and 1968 (Fernandina) generating a prolonged period of strong natural surface cooling.</p><p>Less than a year after the Agung eruption, the first in-situ measurements of a major volcanic aerosol cloud were made with dust-sondes from Minneapolis measuring aerosol particle concentrations with 10 soundings between 1963 and 1965 (6 in 1963-4).</p><p>Global surveys with the U-2 aircraft were equipped with impactors to measure stratospheric aerosol particle size distribution and composition, for example detecting the presence of volcanic ash within the Agung volcanic plume.</p><p>Early ground-based active remote sensing measurements (lidar, searchlight) also measured the vertical profile of the Agung-enhanced stratospheric aerosol layer.</p><p>The main purpose of the SSiRC data rescue is to provide constraints for interactive stratospheric aerosol models, aligning with the ISA-MIP activity, which could potentially lead to new volcanic forcing datasets for climate models, ultimately thereby aiming to improve attribution of anthropogenic change and future projections.</p>

2016 ◽  
Author(s):  
Davide Zanchettin ◽  
Myriam Khodri ◽  
Claudia Timmreck ◽  
Matthew Toohey ◽  
Anja Schmidt ◽  
...  

Abstract. The enhancement of the stratospheric aerosol layer by volcanic eruptions induces a complex set of responses causing global and regional climate effects on a broad range of timescales. Uncertainties exist regarding the climatic response to strong volcanic forcing identified in coupled climate simulations that contributed to the fifth phase of the Climate Model Intercomparison Project (CMIP5). In order to better understand the sources of these model diversities, the model intercomparison project on the climate response to volcanic forcing (VolMIP) has defined a coordinated set of idealized volcanic perturbation experiments to be carried out in alignment with the CMIP6 protocol. VolMIP provides a common stratospheric aerosol dataset for each experiment to eliminate differences in the applied volcanic forcing, and defines a set of initial conditions to determine how internal climate variability contributes to determining the response. VolMIP will assess to what extent volcanically-forced responses of the coupled ocean-atmosphere system are robustly simulated by state-of-the-art coupled climate models and identify the causes that limit robust simulated behavior, especially differences in the treatment of physical processes. This paper illustrates the design of the idealized volcanic perturbation experiments in the VolMIP protocol and describes the common aerosol forcing input datasets to be used.


2021 ◽  
Author(s):  
Thomas Aubry ◽  
Anja Schmidt ◽  
Alix Harrow ◽  
Jeremy Walton ◽  
Jane Mulcahy ◽  
...  

<p>Reconstructions of volcanic aerosol forcing and its climatic impacts are undermined by uncertainties in both the models used to build these reconstructions as well as the proxy and observational records used to constrain those models. Reducing these uncertainties has been a priority and in particular, several modelling groups have developed interactive stratospheric aerosol models. Provided with an initial volcanic injection of sulfur dioxide, these models can interactively simulate the life cycle and optical properties of sulfate aerosols, and their effects on climate. In contrast, most climate models that took part in the Coupled Model Intercomparison Project Phase 5 and 6 (CMIP6) directly prescribe perturbations in atmospheric optical properties associated with an eruption. However, before the satellite era, the volcanic forcing dataset used for CMIP6 mostly relies on a relatively simple aerosol model and a volcanic sulfur inventory derived from ice-cores, both of which have substantial associated uncertainties.</p><p>In this study, we produced a new set of historical simulations using the UK Earth System Model UKESM1, with interactive stratospheric aerosol capability (referred to as interactive runs hereafter) instead of directly prescribing the CMIP6 volcanic forcing dataset as was done for CMIP6 (standard runs, hereafter). We used one of the most recent volcanic sulfur inventories as input for the interactive runs, in which aerosol properties are consistent with the model chemistry, microphysics and atmospheric components. We analyzed how the stratospheric aerosol optical depth, the radiative forcing and the climate response to volcanic eruptions differed between interactive and standard runs, and how these compare to observations and proxy records. In particular, we investigate in detail the differences in the response to the large-magnitude Krakatoa 1883 eruption between the two sets of runs. We also discuss differences for the 1979-2015 period where the forcing data in standard runs is directly constrained from satellite observations. Our results shed new light on uncertainties affecting the reconstruction of past volcanic forcing and highlight some of the benefits and disadvantages of using interactive stratospheric aerosol capabilities instead of a unique prescribed volcanic forcing dataset in CMIP’s historical runs.</p>


2021 ◽  
Author(s):  
Ilaria Quaglia ◽  
Christoph Brühl ◽  
Sandip Dhomse ◽  
Henning Franke ◽  
Anton Laakso ◽  
...  

<p>Large magnitude tropical volcanic eruptions emit sulphur dioxide and other gases directly into the stratosphere, creating a long-lived volcanic aerosol cloud which scatter incoming solar radiation, absorbs outgoing terrestrial radiation, and can strongly affect the composition of the stratosphere.</p><p>Such major volcanic enhancements of the stratospheric aerosol layer have strong “direct effects” on climate via these influences on radiative transfer, primarily surface cooling via the reduced insolation, but also have a range of indirect effects, due to the volcanic aerosol cloud’s effects on stratospheric circulation, dynamics and chemistry.</p><p>In this study, we investigate the 3 largest volcanic enhancements to the stratospheric aerosol layer in the last 100 years (Mt Agung 1963; Mt El Chichón 1982; Mt Pinatubo 1991), comparing co-ordinated simulations within the so-called HErSEA experiments (Historical Eruptions SO2 Emission Assessment) several national climate modelling centres carried out for the model intercomparison project ISA-MIP.</p><p>The HErSEA experiment saw participating models performing interactive stratospheric aerosol simulations of each of the volcanic aerosol clouds with common upper-, mid- and lower-estimate amounts and injection heights of sulfur dioxide, in order to better understand known differences among modelling studies for which initial emission gives best agreement with observations. </p><p>First, we compare results of several models HErSEA simulations with a range of observations, with the aim to find where there is agreement between the models and where there are differences, at the different initial sulfur injection amount and altitude distribution.</p><p>In this way, we could understand the differences and limitations in the mechanisms that controls the dynamical, microphysical and chemical processes of stratospheric aerosol layer.</p>


2020 ◽  
Author(s):  
Sandip S. Dhomse ◽  
Graham W. Mann ◽  
Juan Carlos Antuña Marrero ◽  
Sarah E. Shallcross ◽  
Martyn P. Chipperfield ◽  
...  

Abstract. Accurate quantification of the effects of volcanic eruptions on climate is a key requirement for better attribution of anthropogenic climate change. Here we use the UM-UKCA composition-climate model to simulate the atmospheric evolution of the volcanic aerosol clouds from the three largest eruptions of the 20th century: 1963 Agung, 1982 El Chichón and 1991 Pinatubo. The model has interactive stratospheric chemistry and aerosol microphysics, with coupled aerosol–radiation interactions for realistic composition-dynamics feedbacks. Our simulations align with the design of the Interactive Stratospheric Aerosol Model Intercomparison (ISA-MIP) Historical Eruption SO2 Emissions Assessment. For each eruption, we perform 3-member ensemble model experiments with upper, mid-point and lower estimates for SO2 emission, each initialised to a meteorological state to match the observed phase of the quasi-biennial oscillation (QBO) at the times of the eruptions. We assess how each eruption's emitted SO2 evolves into a tropical reservoir of volcanic aerosol and analyse the subsequent dispersion to mid-latitudes. We compare the simulations to the three volcanic forcing datasets used in historical integrations for the two most recent Coupled Model Intercomparison Project (CMIP) assessments: the Global Space-based Stratospheric Aerosol Climatology (GloSSAC) for CMIP6, and the Sato et al. (1993) and Ammann et al. (2003) datasets used in CMIP5. We also assess the vertical extent of the volcanic aerosol clouds by comparing simulated extinction to Stratospheric Aerosol and Gas Experiment II (SAGE-II) v7.0 satellite aerosol data (1985–1995) for Pinatubo and El Chichón, and to 1964–65 northern hemisphere ground-based lidar measurements for Agung. As an independent test for the simulated volcanic forcing after Pinatubo, we also compare to the shortwave (SW) and longwave (LW) Top-of-the-Atmosphere flux anomalies measured by the Earth Radiation Budget Experiment (ERBE) satellite instrument. For the Pinatubo simulations, an injection of 10 to 14 Tg SO2 gives the best match to the High Resolution Infrared Sounder (HIRS) satellite-derived global stratospheric sulphur burden, with good agreement also to SAGE-II mid-visible and near-infrared extinction measurements. This 10–14 Tg range of emission also generates a heating of the tropical stratosphere that is comparable with the temperature anomaly seen in the ERA-Interim reanalyses. For El Chichón the simulations with 5 Tg and 7 Tg SO2 emission give best agreement with the observations. However, these runs predict a much deeper volcanic cloud than present in the CMIP6 data, with much higher aerosol extinction than the GloSSAC data up to October 1984, but better agreement during the later SAGE-II period. For 1963 Agung, the 9 Tg simulation compares best to the forcing datasets with the model capturing the lidar-observed signature of peak extinction descending from 20 km in 1964 to 16 km in 1965. Overall, our results indicate that the downward adjustment to previous SO2 emission estimates for Pinatubo as suggested by several interactive modelling studies is also needed for the Agung and El Chichón aerosol clouds. This strengthens the hypothesis that interactive stratospheric aerosol models may be missing an important removal or redistribution process (e.g. effects of co-emitted ash) which changes how the tropical reservoir of volcanic aerosol evolves in the initial months after an eruption. Our analysis identifies potentially important inhomogeneities in the CMIP6 dataset for all three periods that are hard to reconcile with variations predicted by the interactive stratospheric aerosol model. We also highlight large differences between the CMIP5 and CMIP6 volcanic aerosol datasets for the Agung and El Chichón periods. Future research should aim to reduce this uncertainty by reconciling the datasets with additional stratospheric aerosol observations.


2021 ◽  
Vol 21 (2) ◽  
pp. 1143-1158 ◽  
Author(s):  
Larry W. Thomason ◽  
Mahesh Kovilakam ◽  
Anja Schmidt ◽  
Christian von Savigny ◽  
Travis Knepp ◽  
...  

Abstract. An analysis of multiwavelength stratospheric aerosol extinction coefficient data from the Stratospheric Aerosol and Gas Experiment II and III/ISS instruments is used to demonstrate a coherent relationship between the perturbation in extinction coefficient in an eruption's main aerosol layer and the wavelength dependence of that perturbation. This relationship spans multiple orders of magnitude in the aerosol extinction coefficient of stratospheric impact of volcanic events. The relationship is measurement-based and does not rely on assumptions about the aerosol size distribution. We note limitations on this analysis including that the presence of significant amounts of ash in the main sulfuric acid aerosol layer and other factors may significantly modulate these results. Despite these limitations, the findings suggest an avenue for improving aerosol extinction coefficient measurements from single-channel observations such as the Optical Spectrograph and Infrared Imager System as they rely on a prior assumptions about particle size. They may also represent a distinct avenue for the comparison of observations with interactive aerosol models used in global climate models and Earth system models.


2018 ◽  
Vol 11 (7) ◽  
pp. 2581-2608 ◽  
Author(s):  
Claudia Timmreck ◽  
Graham W. Mann ◽  
Valentina Aquila ◽  
Rene Hommel ◽  
Lindsay A. Lee ◽  
...  

Abstract. The Stratospheric Sulfur and its Role in Climate (SSiRC) Interactive Stratospheric Aerosol Model Intercomparison Project (ISA-MIP) explores uncertainties in the processes that connect volcanic emission of sulfur gas species and the radiative forcing associated with the resulting enhancement of the stratospheric aerosol layer. The central aim of ISA-MIP is to constrain and improve interactive stratospheric aerosol models and reduce uncertainties in the stratospheric aerosol forcing by comparing results of standardized model experiments with a range of observations. In this paper we present four co-ordinated inter-model experiments designed to investigate key processes which influence the formation and temporal development of stratospheric aerosol in different time periods of the observational record. The Background (BG) experiment will focus on microphysics and transport processes under volcanically quiescent conditions, when the stratospheric aerosol is controlled by the transport of aerosols and their precursors from the troposphere to the stratosphere. The Transient Aerosol Record (TAR) experiment will explore the role of small- to moderate-magnitude volcanic eruptions, anthropogenic sulfur emissions, and transport processes over the period 1998–2012 and their role in the warming hiatus. Two further experiments will investigate the stratospheric sulfate aerosol evolution after major volcanic eruptions. The Historical Eruptions SO2 Emission Assessment (HErSEA) experiment will focus on the uncertainty in the initial emission of recent large-magnitude volcanic eruptions, while the Pinatubo Emulation in Multiple models (PoEMS) experiment will provide a comprehensive uncertainty analysis of the radiative forcing from the 1991 Mt Pinatubo eruption.


2016 ◽  
Author(s):  
Matthew Toohey ◽  
Bjorn Stevens ◽  
Hauke Schmidt ◽  
Claudia Timmreck

Abstract. The Easy Volcanic Aerosol (EVA) forcing generator produces stratospheric aerosol optical properties as a function of time, latitude, height and wavelength for a given input list of volcanic eruption attributes. EVA is based on a parameterized three-box model of stratospheric transport, and simple scaling relationships used to derive mid-visible (550 nm) aerosol optical depth and aerosol effective radius from stratospheric sulfate mass. Pre-calculated look up tables computed from Mie theory are used to produce wavelength dependent aerosol extinction, single scattering albedo and scattering asymmetry factor values. The structural form of EVA, and the tuning of its parameters, are chosen to produce best agreement with the satellite-based reconstruction of stratospheric aerosol properties following the 1991 Pinatubo eruption, and with prior millennial-time scale forcing reconstructions including the 1815 eruption of Tambora. EVA can be used to produce volcanic forcing for climate models which is based on recent observations and physical understanding, but internally self-consistent over any time-scale of choice. In addition, EVA is constructed so as to allow for easy modification of different aspects of aerosol properties, in order to be used in model experiments to help advance understanding of what aspects of the volcanic aerosol are important for the climate system.


2017 ◽  
Author(s):  
Nelson Bègue ◽  
Damien Vignelles ◽  
Gwenaël Berthet ◽  
Thierry Portafaix ◽  
Guillaume Payen ◽  
...  

Abstract. After 43 years of inactivity, the Calbuco volcano which is located in the southern part of Chile erupted on 22 April 2015. The space-time evolutions (distribution and transport) of its aerosol plume are investigated by combining satellite (CALIOP, IASI, OMPS), in situ aerosol counting (LOAC OPC) and lidar observations, and the MIMOSA advection model. The Calbuco aerosol plume reached the Indian Ocean 1 week after the eruption. Over the Reunion Island site (21° S; 55.5° E), the aerosol signal was unambiguously enhanced in comparison with "background" conditions with a volcanic aerosol layer extending from 18 km to 21 km during the May–July period. All the data reveal an increase by a factor of ~ 2 in the SAOD (Stratospheric Aerosol Optical Depth) with respect to values observed before the eruption. The aerosol e-folding time is approximately 90 days. Microphysical measurements obtained before, during and after the eruption reflecting the impact of the Calbuco eruption on the lower stratospheric aerosol content have been analyzed over Reunion site. During the passage of the plume, the volcanic aerosol was characterized by an effective radius of 0.16 ± 0.02 µm with an unimodal lognormal size distribution and the aerosol number concentration appears 20 times higher than before and one year after the eruption. A tendency toward "background" conditions has been observed about one year after the eruption, by April 2016. The volcanic aerosol plume is advected eastward in the Southern Hemisphere and its latitudinal extent is clearly bounded by the subtropical barrier and the polar vortex. The transient behavior of the aerosol layers observed above Reunion Island between May and July 2015 reflects an inhomogeneous geographical distribution of the plume which is controlled by the latitudinal motion of these dynamical barriers.


Atmosphere ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 124
Author(s):  
Andrew R. Klekociuk ◽  
David J. Ottaway ◽  
Andrew D. MacKinnon ◽  
Iain M. Reid ◽  
Liam V. Twigger ◽  
...  

The Calbuco volcano in southern Chile (41.3° S, 72.6° W) underwent three separate eruptions on 22–23 April 2015. Following the eruptions, distinct layers of enhanced lidar backscatter at 532 nm were observed in the lower stratosphere above Buckland Park, South Australia (34.6° S, 138.5° E), and Kingston, Tasmania (43.0° S, 147.3° E), during a small set of observations in April–May 2015. Using atmospheric trajectory modelling and measurements from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) space-borne lidar and the Ozone Mapping Profiler Suite (OMPS) instrument on the Suomi National Polar-orbiting Partnership (NPP) satellite, we show that these layers were associated with the Calbuco eruptions. Buckland Park measurements on 30 April and 3 May detected discrete aerosol layers at and slightly above the tropopause, where the relative humidity was well below saturation. Stratospheric aerosol layers likely associated with the eruptions were observed at Kingston on 17 and 22 May in narrow discrete layers accompanied by weaker and more vertically extended backscatter. The measurements on 22 May provided a mean value of the particle linear depolarisation ratio within the main observed volcanic aerosol layer of 18.0 ± 3.0%, which was consistent with contemporaneous CALIOP measurements. The depolarisation measurements indicated that this layer consisted of a filament dominated by ash backscatter residing above a main region having likely more sulfate backscatter. Layer-average optical depths were estimated from the measurements. The mean lidar ratio for the volcanic aerosols on 22 May of 86 ± 37 sr is consistent with but generally higher than the mean for ground-based measurements for other volcanic events. The inferred optical depth for the main volcanic layer on 17 May was consistent with a value obtained from OMPS measurements, but a large difference on 22 May likely reflected the spatial inhomogeneity of the volcanic plume. Short-lived enhancements of backscatter near the tropopause of 17 May likely represented the formation cirrus that was aided by the presence of associated volcanic aerosols. We also provide evidence that gravity waves potentially influenced the layers, particularly in regard to the vertical motion observed in the strong layer on 22 May. Overall, these observations provide additional information on the dispersal and characteristics of the Calbuco aerosol plumes at higher southern latitudes than previously reported for ground-based lidar measurements.


Sign in / Sign up

Export Citation Format

Share Document