The seismic broad-band antenna of the Low Noise Underground Laboratory (LSBB, Rustrel, France): a tool for measuring the rotation ground motion.

Author(s):  
Olivier Sèbe ◽  
Stéphane Gaffet ◽  
Roxanne Rusch ◽  
Jean-Baptiste Decitre ◽  
Charly Lallemand ◽  
...  

<p>I<span>n the last 20 years, seismologists have recognized that a better sensing of the seismic wavefield is obtained by considering the rotational ground motions in addition to the translation measurements usually provided by seismometers. Even though recent technological developments have resulted in new portable rotation sensors with a sensitivity and a bandwidth suited to seismological applications requirements, the ground rotations have for a long time been estimated indirectly by dense seismic arrays.</span></p><p><span>The Low Noise Underground Laboratory (LSBB) includes a dense 3D seismic antenna composed of 6 STS2 broad-band seismometers since March 2005. From 2016, this array has been upgraded by the installation of about 10 new seismometers at the surface and inside the galleries of the laboratory. Thanks to these dense and small aperture seismic networks, the vertical and horizontal rotations of the ground motion have been estimated by finite difference approximation of the spatial derivatives of the local ground motions. These measurements provide the opportunity to conduct six degree of freedom (6DOF) analysis (3C translations and 3C rotations) to find out the direction of the wave propagation and to estimate the seismic wave local phase velocity. </span></p><p><span>The performance of this seismic array in deriving the local spatial gradient of the seismic wavefield, as well as the rotation tensor, will be illustrated by several selected seismic records such as the 2016 central Italy crisis (Amatrice and Norcia events) as well as the recent local Teil earthquake. In addition, the Array Derived Rotations (ADR) from the LSBB antenna are compared with the rotations measured by different kinds of rotation sensors including 2 prototypes of the new BlueSeis3A and a Lily Borehole Tiltmeter.</span></p>

2020 ◽  
Vol 222 (3) ◽  
pp. 1480-1501
Author(s):  
Ross C Caton ◽  
Gary L Pavlis ◽  
David J Thomson ◽  
Frank L Vernon

SUMMARY We describe array methods to search for low signal-to-noise ratio (SNR) signals in long-period seismic data using Fourier analysis. This is motivated by published results that find evidence of solar free oscillations in the Earth's seismic hum. Previous work used data from only one station. In this paper, we describe methods for computing spectra from array data. Arrays reduce noise level through averaging and provide redundancy that we use to distinguish coherent signal from a random background. We describe two algorithms for calculating a robust spectrum from seismic arrays, an algorithm that automatically removes impulsive transient signals from data, a jackknife method for estimating the variance of the spectrum, and a method for assessing the significance of an entire spectral band. We show examples of their application to data recorded by the Homestake Mine 3-D array in Lead, SD and the Piñon Flats PY array. These are two of the quietest small aperture arrays ever deployed in North America. The underground Homestake data has exceptionally low noise, and the borehole sensors of the PY array also have very low noise, making these arrays well suited to finding very weak signals. We find that our methods remove transient signals effectively from the data so that even low-SNR signals in the seismic background can be found and tested. Additionally, we find that the jackknife variance estimate is comparable to the noise floor, and we present initial evidence for solar g-modes in our data through the T2 test, a multivariate generalization of Student's t-test.


2021 ◽  
pp. 875529302110369
Author(s):  
Sahar Rahpeyma ◽  
Benedikt Halldorsson ◽  
Birgir Hrafnkelsson ◽  
Sigurjón Jónsson

The earthquake ground motions of over 1700 earthquakes recorded on a small-aperture strong-motion array in south Iceland (ICEARRAY I) that is situated on a relatively uniform site condition characterized as rock, exhibit a statistically significant spatial variation of ground-motion amplitudes across the array. Both earthquake and microseismic horizontal-to-vertical spectral ratios (HVSR) have been shown to exhibit distinct and in some cases, bimodal peaks in amplification, indicating site resonance at periods of 0.1–0.3 s, a phenomenon that has been attributed to a surface layer of lava rock lying above a sedimentary layer, a structure that is then repeated with depth under the array. In this study, we implement a Bayesian hierarchical model (BHM) of the seismic ground motions that partitions the model residuals into earthquake event term, station term, and event–station term. We analyzed and compared peak ground acceleration (PGA) with the 5% damped pseudo-acceleration response spectrum (PSA) at oscillator periods of T = 0.05–1.0 s. The results show that the event terms, dominate the total variability of the ground-motion amplitudes over the array. However, the station terms are shown to increase in the period range of 0.1–0.3 s on most stations and to different extents, leading to an increase in the overall variability of ground motions at those periods, captured by a larger inter-station standard deviation. As the station terms are a measure of how much the ground motions at those stations deviate from the array average, they act as proxies for localized site effects and amplification factors. These results, improve our understanding of the key factors that affect the variation of seismic ground motions across the relatively small area of ICEARRAY I. This approach can help to improve the accuracy of earthquake hazard assessments on local scales, which in turn could contribute to more refined seismic risk assessments and engineering decision-making.


2020 ◽  
Vol 224 (3) ◽  
pp. 1753-1779
Author(s):  
Marta Pischiutta ◽  
Aybige Akinci ◽  
Elisa Tinti ◽  
André Herrero

SUMMARY On 24 August 2016 at 01:36 UTC a ML6.0 earthquake struck several villages in central Italy, among which Accumoli, Amatrice and Arquata del Tronto. The earthquake was recorded by about 350 seismic stations, causing 299 fatalities and damage with macroseismic intensities up to 11. The maximum acceleration was observed at Amatrice station (AMT) reaching 916 cm s–2 on E–W component, with epicentral distance of 15 km and Joyner and Boore distance to the fault surface (RJB) of less than a kilometre. Motivated by the high levels of observed ground motion and damage, we generate broad-band seismograms for engineering purposes by adopting a hybrid method. To infer the low frequency seismograms, we considered the kinematic slip model by Tinti et al . The high frequency seismograms were produced using a stochastic finite-fault model approach based on dynamic corner-frequency. Broad-band synthetic time-series were therefore obtained by merging the low and high frequency seismograms. Simulated hybrid ground motions were compared both with the observed ground motions and the ground-motion prediction equations (GMPEs), to explore their performance and to retrieve the region-specific parameters endorsed for the simulations. In the near-fault area we observed that hybrid simulations have a higher capability to detect near source effects and to reproduce the source complexity than the use of GMPEs. Indeed, the general good consistency found between synthetic and observed ground motion (both in the time and frequency domain), suggests that the use of regional-specific source scaling and attenuation parameters together with the source complexity in hybrid simulations improves ground motion estimations. To include the site effect in stochastic simulations at selected stations, we tested the use of amplification curves derived from HVRSs (horizontal-to-vertical response spectra) and from HVSRs (horizontal-to-vertical spectral ratios) rather than the use of generic curves according to NTC18 Italian seismic design code. We generally found a further reduction of residuals between observed and simulated both in terms of time histories and spectra.


2021 ◽  
pp. 875529302098197
Author(s):  
Jack W Baker ◽  
Sanaz Rezaeian ◽  
Christine A Goulet ◽  
Nicolas Luco ◽  
Ganyu Teng

This manuscript describes a subset of CyberShake numerically simulated ground motions that were selected and vetted for use in engineering response-history analyses. Ground motions were selected that have seismological properties and response spectra representative of conditions in the Los Angeles area, based on disaggregation of seismic hazard. Ground motions were selected from millions of available time series and were reviewed to confirm their suitability for response-history analysis. The processes used to select the time series, the characteristics of the resulting data, and the provided documentation are described in this article. The resulting data and documentation are available electronically.


2021 ◽  
pp. 875529302110275
Author(s):  
Carlos A Arteta ◽  
Cesar A Pajaro ◽  
Vicente Mercado ◽  
Julián Montejo ◽  
Mónica Arcila ◽  
...  

Subduction ground motions in northern South America are about a factor of 2 smaller than the ground motions for similar events in other regions. Nevertheless, historical and recent large-interface and intermediate-depth slab earthquakes of moment magnitudes Mw = 7.8 (Ecuador, 2016) and 7.2 (Colombia, 2012) evidenced the vast potential damage that vulnerable populations close to earthquake epicenters could experience. This article proposes a new empirical ground-motion prediction model for subduction events in northern South America, a regionalization of the global AG2020 ground-motion prediction equations. An updated ground-motion database curated by the Colombian Geological Survey is employed. It comprises recordings from earthquakes associated with the subduction of the Nazca plate gathered by the National Strong Motion Network in Colombia and by the Institute of Geophysics at Escuela Politécnica Nacional in Ecuador. The regional terms of our model are estimated with 539 records from 60 subduction events in Colombia and Ecuador with epicenters in the range of −0.6° to 7.6°N and 75.5° to 79.6°W, with Mw≥4.5, hypocentral depth range of 4 ≤  Zhypo ≤ 210 km, for distances up to 350 km. The model includes forearc and backarc terms to account for larger attenuation at backarc sites for slab events and site categorization based on natural period. The proposed model corrects the median AG2020 global model to better account for the larger attenuation of local ground motions and includes a partially non-ergodic variance model.


2021 ◽  
pp. 875529302110194
Author(s):  
Daniel Verret ◽  
Denis LeBœuf ◽  
Éric Péloquin

Eastern North America (ENA) is part of a region with low-to-moderate seismicity; nonetheless, some significant seismic events have occurred in the last few decades. Recent events have reemphasized the need to review ENA seismicity and ground motion models, along with continually reevaluating and updating procedures related to the seismic safety assessment of hydroelectric infrastructures, particularly large dams in Québec. Furthermore, recent researchers have shown that site-specific characteristics, topography, and valley shapes may significantly aggravate the severity of ground motions. To the best of our knowledge, very few instrumental data from actual earthquakes have been published for examining the site effects of hydroelectric dam structures located in eastern Canada. This article presents an analysis of three small earthquakes that occurred in 1999 and 2002 at the Denis-Perron (SM-3) dam. This dam, the highest in Québec, is a rockfill embankment structure with a height of 171 m and a length of 378 m; it is located in a narrow valley. The ground motion datasets of these earthquakes include the bedrock and dam crest three-component accelerometer recordings. Ground motions are analyzed both in the time and frequency domains. The spectral ratios and transfer functions obtained from these small earthquakes provide new insights into the directionality of resonant frequencies, vibration modes, and site effects for the Denis-Perron dam. The crest amplifications observed for this dam are also compared with previously published data for large dams. New statistical relationships are proposed to establish dam crest amplification on the basis of the peak ground acceleration (PGA) at the foundation.


Sign in / Sign up

Export Citation Format

Share Document