Site effects of the Denis-Perron dam (SM-3): A case study in Eastern North America

2021 ◽  
pp. 875529302110194
Author(s):  
Daniel Verret ◽  
Denis LeBœuf ◽  
Éric Péloquin

Eastern North America (ENA) is part of a region with low-to-moderate seismicity; nonetheless, some significant seismic events have occurred in the last few decades. Recent events have reemphasized the need to review ENA seismicity and ground motion models, along with continually reevaluating and updating procedures related to the seismic safety assessment of hydroelectric infrastructures, particularly large dams in Québec. Furthermore, recent researchers have shown that site-specific characteristics, topography, and valley shapes may significantly aggravate the severity of ground motions. To the best of our knowledge, very few instrumental data from actual earthquakes have been published for examining the site effects of hydroelectric dam structures located in eastern Canada. This article presents an analysis of three small earthquakes that occurred in 1999 and 2002 at the Denis-Perron (SM-3) dam. This dam, the highest in Québec, is a rockfill embankment structure with a height of 171 m and a length of 378 m; it is located in a narrow valley. The ground motion datasets of these earthquakes include the bedrock and dam crest three-component accelerometer recordings. Ground motions are analyzed both in the time and frequency domains. The spectral ratios and transfer functions obtained from these small earthquakes provide new insights into the directionality of resonant frequencies, vibration modes, and site effects for the Denis-Perron dam. The crest amplifications observed for this dam are also compared with previously published data for large dams. New statistical relationships are proposed to establish dam crest amplification on the basis of the peak ground acceleration (PGA) at the foundation.

2019 ◽  
Vol 35 (1) ◽  
pp. 1-20 ◽  
Author(s):  
Georgios Zalachoris ◽  
Ellen M. Rathje

A ground motion model (GMM) tuned to the characteristics of the observed, and potentially induced, seismicity in Texas, Oklahoma, and Kansas is developed using a database of 4,528 ground motions recorded during 376 events of Mw > 3.0 in the region. The GMM is derived using the referenced empirical approach with an existing Central and Eastern North America model as the reference GMM and is applicable for Mw = 3.0–5.8 and hypocentral distances less than 500 km. The proposed model incorporates weaker magnitude scaling than the reference GMM for periods less than about 1.0 s, resulting in smaller predicted ground motions at larger magnitudes. The proposed model predicts larger response spectral accelerations at short hypocentral distances (≤20 km), which is likely because of the shallow hypocenters of events in Texas, Oklahoma, and Kansas. Finally, the VS30 scaling for the newly developed model predicts less amplification at VS30 < 600 m/s than the reference GMM, which is likely because of the generally thinner sediments in the study area. This finding is consistent with recent studies regarding site amplification in Central and Eastern North America.


2020 ◽  
Vol 91 (6) ◽  
pp. 3518-3527
Author(s):  
Chris H. Cramer

Abstract Recent M 3–5 earthquakes near Cushing, Oklahoma, provide observations of intensity up to eight with accompanying ground motions due to close-in acceleration records at distances less than 30 km from the epicenters. Adding these observations to the existing Central and Eastern North America (CENA) ground-motion intensity correlation equation (GMICE) database allows the updating of a CENA GMICE from a linear (below intensity six) relationship to a more accurate bilinear relationship (up to intensity eight). The updating of the CENA GMICE is accomplished using linear regression and residual analysis. The analysis shows that the bilinear transition is fairly broad in the CENA covering one to two intensity units and one or more orders of magnitude in ground motion, depending on regression direction. The new CENA GMICE reduces the overprediction of ground motions from high intensities and the underprediction of intensities at both ends of the observed ground-motion range.


1998 ◽  
Vol 88 (4) ◽  
pp. 917-934
Author(s):  
Gail M. Atkinson ◽  
David M. Boore

Abstract There have been several relations proposed in the last few years to describe the amplitudes of ground motion in eastern North America (ENA). These relations differ significantly in their assumptions concerning the amplitude and shape of the spectrum of energy radiated from the earthquake source. In this article, we compare ground motions predicted for these source models against the sparse ENA ground-motion database. The source models evaluated include the two-corner models of Boatwright and Choy (1992), Atkinson (1993a), Haddon (1996), and Joyner (1997a,b), and the one-corner model of Brune [as independently implemented by Frankel et al. (1996) and by Toro et al. (1997)]. The database includes data from ENA mainshocks of M &gt; 4 and historical ENA earthquakes of M &gt; 5.5, for a total of 110 records from 11 events of 4 ≦ M ≦ 7.3, all recorded on rock. We also include 24 available rock records from 4 large earthquakes in other intraplate regions; conclusions are checked to determine whether they are sensitive to the addition of these non-ENA data. The Atkinson source model, as implemented in the ground-motion relations of Atkinson and Boore (1995), is the only model that provides unbiased ground-motion predictions over the entire period band of interest, from 0.1 to 10 sec. The source models of Frankel et al. (1996), Toro et al. (1997), and Joyner (1997a,b) all provide unbiased ground-motion estimates in the period range from 0.1 to 0.5 sec but overestimate motions at periods of 1 to 10 sec. The Haddon (1996) source model overpredicts motions at all periods, by factors of 2 to 10. These conclusions do not change significantly if data from non-ENA intraplate regions are excluded, although the tendency of all models toward overprediction of long-period amplitudes becomes more pronounced. The tendency of most proposed ENA source models to overestimate long-period motions is further confirmed by an evaluation of the relationship between Ms, a measure of the spectrum at 20-sec period, and moment magnitude. A worldwide catalog of shallow continental earthquakes (Triep and Sykes, 1996) is compared to the Ms-M relations implied by each of the source models. The Atkinson source model is consistent with these data, while other proposed ENA models overpredict the average Ms for a given M. The implications of MMI data from historical earthquakes are also addressed, by exploiting the correlation between felt area and high-frequency source spectral level. High-frequency spectral amplitudes, as specified by the Atkinson and Boore (1995), Frankel et al. (1996), Toro et al. (1997), and Joyner (1997a,b) source models, equal or exceed the levels inferred from the felt areas of most of the large ENA events, with the noteable exception of the Saguenay earthquake. By contrast, high-frequency spectral amplitudes specified by the Haddon (1996) source model agree with the felt area of the Saguenay earthquake but overpredict the felt areas of nearly all other large events. In general, models that fit the Saugenay data—be it intensity data, strong-ground-motion data, regional seismographic data, or telescismic data—will not fit the data from the remaining earthquakes. A source model derived from the California database, suitably modified for regional differences in crustal properties, is also evaluated. This model is not significantly different from the Atkinson model for ENA. There is an important practical application of this similarity, which we develop as an engineering tool: Empirical ground-motion relations for California may be modified to predict ENA ground motions from future large earthquakes.


1995 ◽  
Vol 85 (1) ◽  
pp. 17-30 ◽  
Author(s):  
Gail M. Atkinson ◽  
David M. Boore

Abstract Predictive relations are developed for ground motions from eastern North American earthquakes of 4.0 ≦ M ≦ 7.25 at distances of 10 ≦ R ≦ 500 km. The predicted parameters are response spectra at frequencies of 0.5 to 20 Hz, and peak ground acceleration and velocity. The predictions are derived from an empirically based stochastic ground-motion model. The relations differ from previous work in the improved empirical definition of input parameters and empirical validation of results. The relations are in demonstrable agreement with ground motions from earthquakes of M 4 to 5. There are insufficient data to adequately judge the relations at larger magnitudes, although they are consistent with data from the Saguenay (M 5.8) and Nahanni (M 6.8) earthquakes. The underlying model parameters are constrained by empirical data for events as large as M 6.8.


1995 ◽  
Vol 85 (3) ◽  
pp. 825-833
Author(s):  
Gail M. Atkinson ◽  
Thomas C. Hanks

Abstract A high-frequency magnitude scale (m) is proposed: m=2log⁡a˜hf+3, where ãhf is the high-frequency level of the Fourier amplitude spectrum of acceleration in cm/sec (average or random horizontal component), at a hypocentral or closest fault distance of 10 km. m can be determined from either instrumental data or the felt area of an earthquake. The definition of m has been arranged such that m = M (moment magnitude) for events of “average” stress drop, in both eastern North America (ENA) and California. m provides a measure of the stress drop if M is also known. The observed relationship between m and M indicates that the average stress drop is about 150 bars for ENA earthquakes, and about 70 bars for California earthquakes. The variability of stress drop is much larger in ENA than in California. The chief justification for the m scale is its utility in the interpretation of the large preinstrumental earthquakes that are so important to seismic hazard estimation in eastern North America. For such events, m can be determined more reliably than can M or mN (Nuttli magnitude), and forms a much better basis for estimating high-frequency ground motions. When used as a pair, m and M provide a good index of ground motion over the entire engineering frequency band. If both of these magnitudes can be defined for an earthquake then a ground-motion model, such as the stochastic model, can be used to obtain reliable estimates of response spectra and peak ground motions.


1987 ◽  
Vol 58 (4) ◽  
pp. 119-124 ◽  
Author(s):  
Gail M. Atkinson ◽  
David M. Boore

Abstract A stochastic model of ground motion has been used as a basis for comparison of data and theoretically-predicted relations between mN (commonly denoted by mbLg) and moment magnitude for eastern North America (ENA) earthquakes. mN magnitudes are recomputed for several historical ENA earthquakes, to ensure consistency of definition and provide a meaningful data set. We show that by itself the magnitude relation cannot be used as a discriminant between two specific spectral scaling relations, one with constant stress and the other with stress increasing with seismic moment, that have been proposed for ENA earthquakes.


2021 ◽  
Author(s):  
Karina Loviknes ◽  
Danijel Schorlemmer ◽  
Fabrice Cotton ◽  
Sreeram Reddy Kotha

&lt;p&gt;Non-linear site effects are mainly expected for strong ground motions and sites with soft soils and more recent ground-motion models (GMM) have started to include such effects. Observations in this range are, however, sparse, and most non-linear site amplification models are therefore partly or fully based on numerical simulations. We develop a framework for testing of non-linear site amplification models using data from the comprehensive Kiban-Kyoshin network in Japan. The test is reproducible, following the vision of the Collaboratory for the Study of Earthquake Predictability (CSEP), and takes advantage of new large datasets to evaluate &lt;span&gt;whether or not&lt;/span&gt; non-linear site effects predicted by site-amplification models are supported by empirical data. The site amplification models are tested using residuals between the observations and predictions from a GMM based only on magnitude and distance. When the GMM is derived without any site term, the site-specific variability extracted from the residuals is expected to capture the site response of a site. The non-linear site amplification models are tested against a linear amplification model on individual well-record&lt;span&gt;ing&lt;/span&gt; stations. Finally, the result is compared to building codes where non-linearity is included. The test shows that for most of the sites selected as having sufficient records, the non-linear site-amplification models do not score better than the linear amplification model. This suggests that including non-linear site amplification in GMMs and building codes may not yet be justified, at least not in the range of ground motions considered in the test (peak ground acceleration &lt; 0.2 g).&lt;/p&gt;


An effective earthquake (Mw 7.9) struck Alaska on 3 November, 2002. This earthquake ruptured 340 km along Susitna Glacier, Denali and Totschunda faults in central Alaska. The peak ground acceleration (PGA) was recorded about 0.32 g at station PS10, which was located 3 km from the fault rupture. The PGA would have recorded a high value, if more instruments had been installed in the region. A numerical study has been conducted to find out the possible ground motion record that could occur at maximum horizontal slip during the Denali earthquake. The current study overcomes the limitation of number of elements to model the Denali fault. These numerical results are compared with observed ground motions. It is observed that the ground motions obtained through numerical analysis are in good agreement with observed ground motions. From numerical results, it is observed that the possible expected PGA is 0.62 g at maximum horizontal slip of Denali fault.


1993 ◽  
Vol 83 (4) ◽  
pp. 1064-1080 ◽  
Author(s):  
G. A. Bollinger ◽  
M. C. Chapman ◽  
M. S. Sibol

Abstract This study investigates the relationship between earthquake magnitude and the size of damage areas in the eastern and western United States. To quantify damage area as a function of moment magnitude (M), 149 MMI VI and VII areas for 109 earthquakes (88 in the western United States, 21 in the eastern United States and Canada) were measured. Regression of isoseismal areas versus M indicated that areas in the East were larger than those in the West, at both intensity levels, by an average 5 × in the M 4.5 to 7.5 range. In terms of radii for circles of equivalent area, these results indicate that damaging ground motion from shocks of the same magnitude extend 2 × the epicentral distance in eastern North America compared to the West. To determine source and site parameters consistent with the above results, response spectral levels for eastern North America were stochastically simulated and compared with response spectral ordinates derived from recorded strong ground motion data in the western United States. Stress-drop values of 200 bars, combined with a surficial 2-km-thick low velocity “sedimentary” layer over rock basement, produced results that are compatible with the intensity observations, i.e., similar response spectral levels in the east at approximately twice their epicentral distance in the western U.S. distance. These results suggest that ground motion modeling in eastern North America may need to incorporate source and site parameters different from those presently in general use. The results are also of importance to eastern U.S. hazard assessments as they require allowance for the larger damage areas in preparedness and mitigation programs.


Sign in / Sign up

Export Citation Format

Share Document