Environmental influences on historical monuments: a multi-analytical characterization of degradation materials

Author(s):  
Joao Pedro Veiga ◽  
Fernanda Carvalho ◽  
Hugo Aguas ◽  
Giampiero Montesperelli ◽  
Elissavet Kavoulaki ◽  
...  

<div> <p>The Minoan Palace of Knossos and the Venetian coastal fortress “Rocca a mare” (Koules), located in Heraklion, Crete, Greece, are two important monuments for the history of mankind particularly vulnerable to environmental conditions, since they are located in an island subjected to strong variations in humidity and, as in the case of the Venetian fortress, in direct contact with sea water. In this type of surrounding environment, the formation of salt efflorescence as well as various other soluble salts crusts is a common situation. They occur according to the existing solubilization and crystallization conditions and can happen either in exterior or interior areas of the monuments. Their presence may stimulate further degradation, either due to the chemical dissolution of the substrate materials or due to the mechanical actions created by the formation of crystals, which may result in the decay of the substrate.</p> <p>A set of samples from both monuments were analysed using various laboratory (ex-situ) analytical methods such as optical microscopy (OM), X-ray diffraction (XRD), Fourier Transform Infrared spectroscopy (FTIR), Raman spectroscopy and Laser-Induced Breakdown Spectroscopy (LIBS). In-situ measurements using portable Raman and LIBS instruments were also performed. The comparative results from ex-situ analysis and in-situ measurements will be presented with emphasis to the chemical composition of the crusts and their origin. Results indicate that observed stalactites and salt efflorescence are directly related to the type of supporting material and the conditions of the surrounding environment. In general, the formation of crusts and salts are due to processes of alteration of the supporting material while the high impact of sea salt on the formation of the efflorescence at the Venetian coastal fortress was also confirmed.</p> <p> </p> <p>[1] This work was supported by the European Union’s Framework Programme for Research and Innovation HORIZON 2020 under Grant Agreement 700395 project HERACLES.</p> <p>Acknowledgment to the Portuguese Foundation for Science and Technology (FCT) UID/EAT/00729/2013 and EAT/00729-3 by FEDER funds through the COMPETE 2020 Programme and National Funds through FCT—Portuguese Foundation for Science and Technology under the project number POCI-01-0145-FEDER-007688, Reference UID/CTM/50025/2013 NOVA.ID.FCT, and the PhD Scholarship SFRH/BD/145308/2019.</p> </div>

2018 ◽  
Vol 165 (10) ◽  
pp. F883-F890
Author(s):  
Hyun-Seok Cho ◽  
Won-Chul Cho ◽  
J. W. Van Zee ◽  
Chang-Hee Kim

2021 ◽  
Author(s):  
Amanda T. Nylund ◽  
Rickard Bensow ◽  
Mattias Liefvendahl ◽  
Arash Eslamdoost ◽  
Anders Tengberg ◽  
...  

<p>This interdisciplinary study with implications for fate and transport of pollutants from shipping, investigates the previously overlooked phenomenon of ship induced mixing. When a ship moves through water, the hull and propeller induce a long-lasting turbulent wake. Natural waters are usually stratified, and the stratification influences both the vertical and horizontal extent of the wake. The altered turbulent regime in shipping lanes governs the distribution of discharged pollutants, e.g. PAHs, metals, nutrients and non-indigenous species. The ship related pollutant load follows the trend in volumes of maritime trade, which has almost tripled since the 1980s. In heavily trafficked areas there may be one ship passage every ten minutes; today shipping constitutes a significant source of pollution.</p><p>To understand the environmental impact of shipping related pollutants, it is essential to know their fate following regional scale transport. However, previous modelling efforts assuming discharge at the surface will not adequately reflect the input values in the regional models. Therefore, it is urgent to bridge the gaps between the spatiotemporal scales from high-resolution numerical modeling of the flow hydrodynamics around the ship, mixing processes and interaction of the ship and wake with stratification, and parameterization in regional oceanographic modeling. Here this knowledge gap is addressed by combining an array of methods; in situ measurements, remote sensing and numerical flow modeling.</p><p>A bottom-mounted Acoustic Doppler Current Profiler was placed under a ship lane, for <em>in-situ</em> measurements of the vertical and temporal expansion of turbulent wakes. In addition, <em>ex-situ</em> measurements with Landsat 8 Thermal Infrared Sensor were used to estimate the longevity and spatial extent of the thermal signal from ship wakes. The computational modelling was conducted using well resolved 3D RANS modelling for the hull and the near wake (up to five ship lengths aft), a method typically used for the near wake behaviour in analysing the propulsion system. As this is not feasible to use for a far wake analysis, the predicted wake is then used as input for a 2D+time modelling for the sustained wake up to 30min after the ship passage. These results, both from measurements and numerical models, are then combined to analyse how ship-induced turbulence influence at what depth discharged pollutants will be found.</p><p>This first step to cover the mesoscales of the turbulent ship wake is necessary to assess the impact of ship related pollution. In-situ measurements show median wake depth 13.5m (max 31.5m) and median longevity 10min (max 29min). Satellite data show median thermal wake signal 13.7km (max 62.5km). A detailed simulation model will only be possible to use for the first few 100m of the ship wake, but the coupling to a simplified 2D+time modelling shows a promising potential to bridge our understanding of the impact of the ship wake on the larger scales. Our model results indicate that the natural stratification affects the distribution and retention of pollutants in the wake region. The depth of discharge and the wake turbulence characteristics will in turn affect the fate and transport of pollutants on larger spatiotemporal scales.</p>


2021 ◽  
Author(s):  
Ana M. Mancho ◽  
Guillermo García-Sánchez ◽  
Antonio G. Ramos ◽  
Josep Coca ◽  
Begoña Pérez-Gómez ◽  
...  

<p>This presentation discusses a downstream application from Copernicus Services, developed in the framework of the IMPRESSIVE project, for the monitoring of  the oil spill produced after the crash of the ferry “Volcan de Tamasite” in waters of the Canary Islands on the 21<sup>st</sup> of April 2017. The presentation summarizes the findings of [1] that describe a complete monitoring of the diesel fuel spill, well-documented by port authorities. Complementary information supplied by different sources enhances the description of the event. We discuss the performance of very high resolution hydrodynamic models in the area of the Port of Gran Canaria and their ability for describing the evolution of this event. Dynamical systems ideas support the comparison of different models performance. Very high resolution remote sensing products and in situ observation validate the description.</p><p>Authors acknowledge support from IMPRESSIVE a project funded by the European Union’s Horizon 2020 research and innovation programme under grant agreement No 821922. SW acknowledges the support of ONR Grant No. N00014-01-1-0769</p><p><strong>References</strong></p><p>[1] G.García-Sánchez, A. M. Mancho, A. G. Ramos, J. Coca, B. Pérez-Gómez, E. Álvarez-Fanjul, M. G. Sotillo, M. García-León, V. J. García-Garrido, S. Wiggins. Very High Resolution Tools for the Monitoring and Assessment of Environmental Hazards in Coastal Areas.  Front. Mar. Sci. (2021) doi: 10.3389/fmars.2020.605804.</p>


2019 ◽  
Vol 8 (5) ◽  
pp. 153 ◽  
Author(s):  
Junic Kim ◽  
Jaewook Yoo

Science and Technology policy is regarded as an essential factor for future growth in the EU, and Horizon 2020 is the world’s most extensive research and innovation programme created by the European Union to support and encourage research in the European Research Area (ERA). The purpose of this study is to analyse and evaluate the changes to the EU’s science and technology policies from Framework Programme to Horizon 2020 and to provide vital information to research organisations and academia to conceive and conduct future research on international cooperation with the EU. Through a policy analysis, this study summarised the four science and technology policy implications: (1) building ecosystems through mutual complementation among industries, (2) solving social problems through science and technology, (3) strengthening SMEs’ participation, and (4) sharing knowledge and strengthening collaboration with non-EU countries.


2020 ◽  
Author(s):  
Endre Dobos ◽  
Károly Kovács ◽  
Daniel Kibirige ◽  
Péter Vadnai

<p>Soil moisture is a crucial factor for agricultural activity, but also an important factor for weather forecast and climate science. Despite of the technological development in soil moisture sensing, no full coverage global or continental or even national scale soil moisture monitoring system exist.  There is a new European initiative to demonstrate the feasibility of a citizen observatory based soil moisture monitoring system.  The aim of this study is to characterize this new monitoring approach and provide provisional results on the interpretation and system performance.</p><p>GROW Observatory is a project funded under the European Union’s Horizon 2020 research and innovation program. Its aim is to establish a large scale (>20,000 participants), resilient and integrated ‘Citizen Observatory’ (CO) and community for environmental monitoring that is self-sustaining beyond the life of the project. This article describes how the initial framework and tools were developed to evolve, bring together and train such a community; raising interest, engaging participants, and educating to support reliable observations, measurements and documentation, and considerations with a special focus on the reliability of the resulting dataset for scientific purposes. The scientific purposes of GROW observatory are to test the data quality and the spatial representativity of a citizen engagement driven spatial distribution as reliably inputs for soil moisture monitoring and   to create timely series of  gridded soil moisture products based on citizens’ observations using low cost soil moisture (SM) sensors, and to provide an extensive dataset of in-situ soil moisture observations which can serve as a reference to validate satellite-based SM products and support the Copernicus in-situ component. This article aims to showcase the design, tools and the digital soil mapping approaches of the final soil moisture product.</p>


1996 ◽  
Vol 426 ◽  
Author(s):  
R. Scheer ◽  
M. Alt ◽  
I. Luck ◽  
R. Schieck ◽  
H. J. Lewerenz

AbstractThe conductivity σ of CuInS2 films grown by coevaporation is investigated by in-situ measurements during the deposition and ex-situ measurements. During the controlled cool-down period of the grown films, σ vs l/T data are obtained for films with Cu-rich and In-rich composition. Furthermore, first experiments on the effect of extrinsic dopants such as P, N, and Na on the conductivity of In-rich films are reported.


Author(s):  
Małgorzata Robakiewicz

AbstractBrine, a by-product in the process of constructing gas storage caverns in salt deposits, has been discharged into Puck Bay by a system of diffusers since autumn 2010. In-situ measurements taken in the period of October 2010–December 2012 were used to assess salinity changes in the vicinity of the discharge installation. The measured salinity values included two components: the natural, representing salinity in the absence of discharge, and salinity excess due to brine discharge. Owing to the limited number of locations in the Gulf of Gdańsk where the national program of monitoring environmental changes is carried out, it was impossible to determine exactly the natural component. As a consequence, four estimation methods were proposed. A detailed analysis was carried out for the second half of 2012, when parameters of brine were close to the maximum permissible values. It was found that the average salinity excess in the vicinity of the installation rarely reached 0.5 PSU, and the maximum values at individual sites occasionally reached 0.6 PSU. It was shown that the local wind plays an important role in brine mixing with the surrounding environment, however, it is not sufficient to explain the observed salinity patterns.


2011 ◽  
Vol 77 (6) ◽  
pp. 903-913 ◽  
Author(s):  
Hsueh-Jung Lu ◽  
Myounghee Kang ◽  
Hsing-Han Huang ◽  
Chi-Chang Lai ◽  
Long-Jin Wu

2006 ◽  
Vol 44 ◽  
pp. 217-223 ◽  
Author(s):  
J.E. Reid ◽  
A. Pfaffling ◽  
A.P. Worby ◽  
J.R. Bishop

AbstractAirborne, Ship-borne and Surface low-frequency electromagnetic (EM) methods have become widely applied to measure Sea-ice thickness. EM responses measured over Sea ice depend mainly on the Sea-water conductivity and on the height of the Sensor above the Sea-ice–sea-water interface, but may be Sensitive to the Sea-ice conductivity at high excitation frequencies. We have conducted in Situ measurements of direct-current conductivity of Sea ice using Standard geophysical geoelectrical methods. Sea-ice thickness estimated from the geoelectrical Sounding data was found to be consistently underestimated due to the pronounced vertical-to-horizontal conductivity anisotropy present in level Sea ice. At five Sites, it was possible to determine the approximate horizontal and vertical conductivities from the Sounding data. The average horizontal conductivity was found to be 0.017 Sm–1, and that in the vertical direction to be 9–12 times higher. EM measurements over level Sea ice are Sensitive only to the horizontal conductivity. Numerical modelling has Shown that the assumption of zero Sea-ice conductivity in interpretation of airborne EM data results in a negligible error in interpreted thickness for typical level Antarctic Sea ice.


Sign in / Sign up

Export Citation Format

Share Document