Sea ice representation in sea ice model of CICE and Icepack

Author(s):  
Caixin Wang ◽  
Mats A. Granskog ◽  
Jens Boldingh Debernard ◽  
Keguang Wang

<p>Sea ice is a critical component of the Earth system, playing an important role in high-latitude<br>surface radiation balance and heat, moisture and momentum exchange between atmosphere<br>and ocean. In recent years, rapid changes have been occurring in Arctic sea ice, including<br>decline in ice extent/area, decreasing in ice thickness and volume, and shifting towards a first-<br>year ice (FYI) dominated, rather than multi-year ice (MYI) dominated ice pack. These are one<br>of the most well-known and striking examples of climate change. However, representing<br>these changes in the model is still in question since most of our knowledge is based on MYI.<br>CICE is a sea ice model developed at Los Alamos National Laboratory since 1994. It is<br>widely used to simulate the growth, melt and movement of sea ice, and to resolve the<br>biogeochemical processes. Its column version, Icepack, has been separated from CICE after<br>CICE V5.1.2, which provides additional opportunity for simulating the evolution of drifting<br>sea ice floes. How about the representation of sea ice in a column model (Icepack) and a 3d<br>model (CICE)? In 2012, an ice mass balance buoy (IMB) and a Spectral Radiation Buoy<br>(SRB) were deployed on FYI near the North Pole, and later drifted towards Fram Strait. These<br>buoys collected a complete summer melt season of in-band (350-800 nm) spectral solar<br>radiation and sea ice mass balance data. In this study, we apply the Icepack (version 1.1.1)<br>and CICE (version 5.1.2) to investigate the seasonal evolution of sea ice in 2012 in these two models, and<br>assess how well the physical processes are represented in CICE and Icepack, with the focus<br>on the surface changes.</p>

2020 ◽  
Vol 13 (10) ◽  
pp. 4845-4868
Author(s):  
Alex West ◽  
Mat Collins ◽  
Ed Blockley

Abstract. A new method of sea ice model evaluation is demonstrated. Data from the network of Arctic ice mass balance buoys (IMBs) are used to estimate distributions of vertical energy fluxes over sea ice in two densely sampled regions – the North Pole and Beaufort Sea. The resulting dataset captures seasonal variability in sea ice energy fluxes well, and it captures spatial variability to a lesser extent. The dataset is used to evaluate a coupled climate model, HadGEM2-ES (Hadley Centre Global Environment Model, version 2, Earth System), in the two regions. The evaluation shows HadGEM2-ES to simulate too much top melting in summer and too much basal conduction in winter. These results are consistent with a previous study of sea ice state and surface radiation in this model, increasing confidence in the IMB-based evaluation. In addition, the IMB-based evaluation suggests an additional important cause for excessive winter ice growth in HadGEM2-ES, a lack of sea ice heat capacity, which was not detectable in the earlier study. Uncertainty in the IMB fluxes caused by imperfect knowledge of ice salinity, snow density and other physical constants is quantified (as is inaccuracy due to imperfect sampling of ice thickness) and in most cases is found to be small relative to the model biases discussed. Hence the IMB-based evaluation is shown to be a valuable tool with which to analyse sea ice models and, by extension, better understand the large spread in coupled model simulations of the present-day ice state. Reducing this spread is a key task both in understanding the current rapid decline in Arctic sea ice and in constraining projections of future Arctic sea ice change.


2006 ◽  
Vol 19 (7) ◽  
pp. 1089-1108 ◽  
Author(s):  
Paul A. Miller ◽  
Seymour W. Laxon ◽  
Daniel L. Feltham ◽  
Douglas J. Cresswell

Abstract A stand-alone sea ice model is tuned and validated using satellite-derived, basinwide observations of sea ice thickness, extent, and velocity from the years 1993 to 2001. This is the first time that basin-scale measurements of sea ice thickness have been used for this purpose. The model is based on the CICE sea ice model code developed at the Los Alamos National Laboratory, with some minor modifications, and forcing consists of 40-yr ECMWF Re-Analysis (ERA-40) and Polar Exchange at the Sea Surface (POLES) data. Three parameters are varied in the tuning process: Ca, the air–ice drag coefficient; P*, the ice strength parameter; and α, the broadband albedo of cold bare ice, with the aim being to determine the subset of this three-dimensional parameter space that gives the best simultaneous agreement with observations with this forcing set. It is found that observations of sea ice extent and velocity alone are not sufficient to unambiguously tune the model, and that sea ice thickness measurements are necessary to locate a unique subset of parameter space in which simultaneous agreement is achieved with all three observational datasets.


2020 ◽  
Author(s):  
Bin Cheng ◽  
Timo Vihma ◽  
Zeling Liao ◽  
Ruibo Lei ◽  
Mario Hoppmann ◽  
...  

<p>A thermistor-string-based Snow and Ice Mass Balance Array (SIMBA) has been developed in recent years and used for monitoring snow and ice mass balance in the Arctic Ocean. SIMBA measures vertical environment temperature (ET) profiles through the air-snow-sea ice-ocean column using a thermistor string (5 m long, sensor spacing 2cm). Each thermistor sensor equipped with a small identical heating element. A small voltage was applied to the heating element so that the heat energy liberated in the vicinity of each sensor is the same. The heating time intervals lasted 60 s and 120 s, respectively. The heating temperatures (HT) after these two intervals were recorded. The ET was measured 4 times a day and once per day for the HT.</p><p>A total 15 SIMBA buoys have been deployed in the Arctic Ocean during the Chinese National Arctic Research Expedition (CHINARE) 2018 and the Nansen and Amundsen Basins Observational System (NABOS) 2018 field expeditions in late autumn. We applied a recently developed SIMBA algorithm to retrieve snow and ice thickness using SIMBA ET and HT temperature data. We focus particularly on sea ice bottom evolution during Arctic winter.</p><p>In mid-September 2018, 5 SIMBA buoys were deployed in the East Siberian Sea (NABOS2018) where snow was in practical zero cm and ice thickness ranged between 1.8 m – 2.6 m. By the end of May, those SIMBA buoys were drifted in the central Arctic where snow and ice thicknesses were around 0.05m - 0.2m and 2.6m – 3.2m, respectively. For those 10 SIMBA buoys deployed by the CHINARE2018 in the Chukchi Sea and Canadian Basin, the initial snow and ice thickness were ranged between 0.05m – 0.1cm and 1.5m – 2.5m, respectively.  By the end of May, those SIMBA buoys were drifted toward the north of Greenland where snow and ice thicknesses were around 0.2m - 0.3m and 2.0m – 3.5m, respectively. The ice bottom evolution derived by SIMBA algorithm agrees well with SIMBA HT identified ice-ocean interfaces. We also perform a preliminary investigation of sea ice bottom evolution measured by several SIMBA buoys deployed during the MOSAiC leg1 field campaign in winter 2019/2020.  </p>


2021 ◽  
Author(s):  
Sean Horvath ◽  
Linette Boisvert ◽  
Chelsea Parker ◽  
Melinda Webster ◽  
Patrick Taylor ◽  
...  

Abstract. Since the early 2000s, sea ice has experienced an increased rate of decline in thickness and extent and transitioned to a seasonal ice cover. This shift to thinner, seasonal ice in the 'New Arctic' is accompanied by a reshuffling of energy flows at the surface. Understanding the magnitude and nature of this reshuffling and the feedbacks therein remains limited. A novel database is presented that combines satellite observations, model output, and reanalysis data with daily sea ice parcel drift tracks produced in a Lagrangian framework. This dataset consists of daily time series of sea ice parcel locations, sea ice and snow conditions, and atmospheric states. Building on previous work, this dataset includes remotely sensed radiative and turbulent fluxes from which the surface energy budget can be calculated. Additionally, flags indicate when sea ice parcels travel within cyclones, recording distance and direction from the cyclone center. The database drift track was evaluated by comparison with sea ice mass balance buoys. Results show ice parcels generally remain within 100km of the corresponding buoy, with a mean distance of 82.6 km and median distance of 54 km. The sea ice mass balance buoys also provide recordings of sea ice thickness, snow depth, and air temperature and pressure which were compared to this database. Ice thickness and snow depth typically are less accurate than air temperature and pressure due to the high spatial variability of the former two quantities when compared to a point measurement. The correlations between the ice parcel and buoy data are high, which highlights the accuracy of this Lagrangian database in capturing the seasonal changes and evolution of sea ice. This database has multiple applications for the scientific community; it can be used to study the processes that influence individual sea ice parcel time series, or to explore generalized summary statistics and trends across the Arctic. Applications such as these may shed light on the atmosphere-snow-sea ice interactions in the changing Arctic environment.


2019 ◽  
Vol 13 (4) ◽  
pp. 1283-1296 ◽  
Author(s):  
Lise Kilic ◽  
Rasmus Tage Tonboe ◽  
Catherine Prigent ◽  
Georg Heygster

Abstract. Mapping sea ice concentration (SIC) and understanding sea ice properties and variability is important, especially today with the recent Arctic sea ice decline. Moreover, accurate estimation of the sea ice effective temperature (Teff) at 50 GHz is needed for atmospheric sounding applications over sea ice and for noise reduction in SIC estimates. At low microwave frequencies, the sensitivity to the atmosphere is low, and it is possible to derive sea ice parameters due to the penetration of microwaves in the snow and ice layers. In this study, we propose simple algorithms to derive the snow depth, the snow–ice interface temperature (TSnow−Ice) and the Teff of Arctic sea ice from microwave brightness temperatures (TBs). This is achieved using the Round Robin Data Package of the ESA sea ice CCI project, which contains TBs from the Advanced Microwave Scanning Radiometer 2 (AMSR2) collocated with measurements from ice mass balance buoys (IMBs) and the NASA Operation Ice Bridge (OIB) airborne campaigns over the Arctic sea ice. The snow depth over sea ice is estimated with an error of 5.1 cm, using a multilinear regression with the TBs at 6, 18, and 36 V. The TSnow−Ice is retrieved using a linear regression as a function of the snow depth and the TBs at 10 or 6 V. The root mean square errors (RMSEs) obtained are 2.87 and 2.90 K respectively, with 10 and 6 V TBs. The Teff at microwave frequencies between 6 and 89 GHz is expressed as a function of TSnow−Ice using data from a thermodynamical model combined with the Microwave Emission Model of Layered Snowpacks. Teff is estimated from the TSnow−Ice with a RMSE of less than 1 K.


2019 ◽  
Author(s):  
Alex West ◽  
Mat Collins ◽  
Ed Blockley

Abstract. Arctic sea ice has declined rapidly over recent decades. Models predict that the Arctic will be nearly ice-free by mid-century, but the spread in predictions of sea ice extent is currently large. The reasons for this spread are poorly understood, partly due to a lack of observations with which the processes by which Arctic atmospheric and oceanic forcing affect sea ice state can be examined. In this study, a method of estimating fluxes of top melt, top conduction, basal conduction and ocean heat flux from Arctic ice mass balance buoy elevation and temperature data is presented. The derived fluxes are used to evaluate modelled fluxes from the coupled climate model HadGEM2-ES in two densely sampled regions of the Arctic, the North Pole and Beaufort Sea. The evaluation shows the model to overestimate the magnitude of summer top melting fluxes, and winter conductive fluxes, results which are physically consistent with an independent sea ice and surface energy evaluation of the same model.


2018 ◽  
Author(s):  
Lise Kilic ◽  
Rasmus Tage Tonboe ◽  
Catherine Prigent ◽  
Georg Heygster

Abstract. Mapping Sea Ice Concentration (SIC) and understanding sea ice properties and variability is important especially today with the recent Arctic sea ice decline. Moreover, accurate estimation of the sea ice effective temperature (Teff) at 50 GHz is needed for atmospheric sounding applications over sea ice and for noise reduction in SIC estimates. At low microwave frequencies, the sensitivity to atmosphere is low, and it is possible to derive sea ice parameters due to the penetration of microwaves in the snow and ice layers. In this study, we propose simple algorithms to derive the snow depth, the snow-ice interface temperature (TSnow-Ice) and the Teff of Arctic sea ice from microwave brightness temperatures (TBs). This is achieved using the Round Robin Data Package of the ESA sea ice CCI project, which contains TBs from the Advanced Microwave Scanning Radiometer 2 (AMSR2) collocated with measurements from Ice Mass Balance (IMB) buoys and the NASA Operation Ice Bridge (OIB) airborne campaigns over the Arctic sea ice. The snow depth over sea ice is estimated with an error of ~ 6 cm using a multilinear regression with the TBs at 6 V, 18 V, and 36 V. The TSnow-Ice is retrieved using a linear regression as a function of the snow depth and the TBs at 10 V or 6 V. The Root Mean Square Errors (RMSEs) obtained are 1.69 and 1.95 K respectively, with the 10 V and 6 V TBs. The Teff at microwave frequencies between 6 and 89 GHz is expressed as a function of TSnow-Ice using data from a thermodynamical model combined with the Microwave Emission Model of Layered Snow-packs. Teffs are estimated from the TSnow-Ice with a RMSE of less than 1 K.


1990 ◽  
Vol 14 ◽  
pp. 43-46 ◽  
Author(s):  
Judith A. Curry ◽  
Elizabeth E. Ebert

The sensitivity of Arctic sea-ice thickness to the optical properties of clouds is investigated. Pollution aerosol has the potential to modify cloud optical properties significantly, which in turn could perturb the radiation balance at the surface of the pack ice. A one-dimensional thermodynamic model of sea ice is employed in this study. Radiative fluxes are parameterized in terms of integrated liquid (ice) water path and the particle effective radius. Results from these calculations show that, for a constant liquid (ice) water path, increasing cloud droplet concentration and the associated reduction in drop size results in a significantly altered surface radiation balance, contributing to an increase in sea-ice thickness. Considerable sensitivity has also been shown of the surface radiation balance to the frequency of occurrence and optical depth of lower tropospheric ice crystals that are present during the cold part of the year.


Sign in / Sign up

Export Citation Format

Share Document