Seismic Microzonation using 6C Measurements

Author(s):  
Sabrina Keil ◽  
Joachim Wassermann ◽  
Heiner Igel

<p>Microzonation is one of the essential tools in seismology to mitigate earthquake damage by estimating the near surface velocity structure and developing land usage plans and intelligent building design. The number of microzonation studies increased in the last few years as induced seismicity becomes more relevant, even in low risk areas. While of vital importance, especially in densely populated cities, most of the traditional techniques suffer from different short comings. The microzonation technique presented here tries to reduce the existing ambiguity of the inversion results by the combination of single-station six-component (6C) measurements, including three translational and three rotational motions, and more traditional H/V techniques. By applying this new technique to a microzonation study in Munichs (Germany) inner city using an iXblue blueSeis-3A rotational motion sensor together with a Nanometrics Trillium Compact seismometer we were able to estimate Love and Rayleigh wave dispersion curves. These curves together with H/V spectral ratios are then inverted to obtain shear wave velocity profiles of the upper 100 m. The resulting 1D velocity profiles are used to estimate the local shaking characteristics in Munich. In addition, the comparison between the estimated velocity models and the borehole-derived lithology gives a positive correlation, indicating the applicability of our method.</p>

1996 ◽  
Vol 86 (6) ◽  
pp. 1704-1713 ◽  
Author(s):  
R. D. Catchings ◽  
W. H. K. Lee

Abstract The 17 January 1994, Northridge, California, earthquake produced strong ground shaking at the Cedar Hills Nursery (referred to here as the Tarzana site) within the city of Tarzana, California, approximately 6 km from the epicenter of the mainshock. Although the Tarzana site is on a hill and is a rock site, accelerations of approximately 1.78 g horizontally and 1.2 g vertically at the Tarzana site are among the highest ever instrumentally recorded for an earthquake. To investigate possible site effects at the Tarzana site, we used explosive-source seismic refraction data to determine the shallow (<70 m) P-and S-wave velocity structure. Our seismic velocity models for the Tarzana site indicate that the local velocity structure may have contributed significantly to the observed shaking. P-wave velocities range from 0.9 to 1.65 km/sec, and S-wave velocities range from 0.20 and 0.6 km/sec for the upper 70 m. We also found evidence for a local S-wave low-velocity zone (LVZ) beneath the top of the hill. The LVZ underlies a CDMG strong-motion recording site at depths between 25 and 60 m below ground surface (BGS). Our velocity model is consistent with the near-surface (<30 m) P- and S-wave velocities and Poisson's ratios measured in a nearby (<30 m) borehole. High Poisson's ratios (0.477 to 0.494) and S-wave attenuation within the LVZ suggest that the LVZ may be composed of highly saturated shales of the Modelo Formation. Because the lateral dimensions of the LVZ approximately correspond to the areas of strongest shaking, we suggest that the highly saturated zone may have contributed to localized strong shaking. Rock sites are generally considered to be ideal locations for site response in urban areas; however, localized, highly saturated rock sites may be a hazard in urban areas that requires further investigation.


2012 ◽  
Vol 227-228 ◽  
pp. 50-60 ◽  
Author(s):  
Laurence Perrier ◽  
Jean-Philippe Métaxian ◽  
Jean Battaglia ◽  
Esline Garaebiti

Geophysics ◽  
1995 ◽  
Vol 60 (6) ◽  
pp. 1917-1929 ◽  
Author(s):  
Joseph P. Stefani

Turning‐ray tomography is useful for estimating near‐surface velocity structure in areas where conventional refraction statics techniques fail because of poor data or lack of smooth refractor/velocity structure. This paper explores the accuracy and inherent smoothing of turning‐ray tomography in its capacity to estimate absolute near‐surface velocity and the statics times derived from these velocities, and the fidelity with which wavefields collapse to point diffractors when migrated through these estimated velocities. The method comprises nonlinear iterations of forward ray tracing through triangular cells linear in slowness squared, coupled with the LSQR linear inversion algorithm. It is applied to two synthetic finite‐ difference data sets of types that usually foil conventional refraction statics techniques. These models represent a complex hard‐rock overthrust structure with a low‐velocity zone and pinchouts, and a contemporaneous near‐shore marine trench filled with low‐ velocity unconsolidated deposits exhibiting no seismically apparent internal structure. In both cases velocities are estimated accurately to a depth of one‐ fifth the maximum offset, as are the associated statics times. Of equal importance, the velocities are sufficiently accurate to correctly focus synthetic wavefields back to their initial point sources, so migration/datuming applications can also use these velocities. The method is applied to a real data example from the Timbalier Trench in the Gulf of Mexico, which exhibits the same essential features as the marine trench synthetic model. The Timbalier velocity inversion is geologically reasonable and yields long and short wavelength statics that improve the CMP gathers and stack and that correctly align reflections to known well markers. Turning‐ray tomography estimates near‐surface velocities accurately enough for the three purposes of lithology interpretation, statics calculations, and wavefield focusing for shallow migration and datuming.


1997 ◽  
Vol 34 (8) ◽  
pp. 1167-1184 ◽  
Author(s):  
S. Winardhi ◽  
R. F. Mereu

The 1992 Lithoprobe Abitibi–Grenville Seismic Refraction Experiment was conducted using four profiles across the Grenville and Superior provinces of the southeastern Canadian Shield. Delay-time analysis and tomographic inversion of the data set demonstrate significant lateral and vertical variations in crustal velocities from one terrane to another, with the largest velocity values occurring underneath the Central Gneiss and the Central Metasedimentary belts south of the Grenville Front. The Grenville Front Tectonic Zone is imaged as a southeast-dipping region of anomalous velocity gradients extending to the Moho. The velocity-anomaly maps suggest an Archean crust may extend, horizontally, 140 km beneath the northern Grenville Province. Near-surface velocity anomalies correlate well with the known geology. The most prominent of these is the Sudbury Structure, which is well mapped as a low-velocity basinal structure. The tomography images also suggest underthrusting of the Pontiac and Quetico subprovinces beneath the Abitibi Greenstone Belt. Wide-angle PmP signals, indicate that the Moho varies from a sharp discontinuity south of the Grenville Front to a rather diffuse and flat boundary under the Abitibi Greenstone Belt north of the Grenville Front. A significant crustal thinning near the Grenville Front may indicate post-Grenvillian rebound and (or) the extensional structure of the Ottawa–Bonnechere graben. Crustal thickening resulting from continental collision may explain the tomographic images showing the Moho is 4–5 km deeper south of the Grenville Front.


2020 ◽  
Vol 39 (5) ◽  
pp. 310-310
Author(s):  
Steve Sloan ◽  
Dan Feigenbaum

This special section on near-surface imaging and modeling was intended originally to focus on improving deeper imaging for exploration purposes through more accurate representations of the near surface, the highly variable zone that energy must traverse through on the way down and back up again to be recorded at the surface. However, as proposed manuscript topics started coming in, it became clear that this section would cover a wider range, from kilometers down to meters. Papers in this section highlight a range of near-surface-related work that includes applying full-waveform inversion (FWI) to improve near-surface velocity models, identifying potential sinkhole hazards before they collapse, the potential of smartphones as geophysical sensors, and new open-source software for ground-penetrating radar data.


Geophysics ◽  
2010 ◽  
Vol 75 (5) ◽  
pp. 75A83-75A102 ◽  
Author(s):  
Laura Valentina Socco ◽  
Sebastiano Foti ◽  
Daniele Boiero

Today, surface-wave analysis is widely adopted for building near-surface S-wave velocity models. The surface-wave method is under continuous and rapid evolution, also thanks to the lively scientific debate among different disciplines, and interest in the technique has increased significantly during the last decade. A comprehensive review of the literature in the main scientific journals provides historical perspective, methodological issues, applications, and most-promising recent approaches. Higher modes in the inversion and retrieval of lateral variations are dealt with in great detail, and the current scientific debate on these topics is reported. A best-practices guideline is also outlined.


Sign in / Sign up

Export Citation Format

Share Document