Turning‐ray tomography
Turning‐ray tomography is useful for estimating near‐surface velocity structure in areas where conventional refraction statics techniques fail because of poor data or lack of smooth refractor/velocity structure. This paper explores the accuracy and inherent smoothing of turning‐ray tomography in its capacity to estimate absolute near‐surface velocity and the statics times derived from these velocities, and the fidelity with which wavefields collapse to point diffractors when migrated through these estimated velocities. The method comprises nonlinear iterations of forward ray tracing through triangular cells linear in slowness squared, coupled with the LSQR linear inversion algorithm. It is applied to two synthetic finite‐ difference data sets of types that usually foil conventional refraction statics techniques. These models represent a complex hard‐rock overthrust structure with a low‐velocity zone and pinchouts, and a contemporaneous near‐shore marine trench filled with low‐ velocity unconsolidated deposits exhibiting no seismically apparent internal structure. In both cases velocities are estimated accurately to a depth of one‐ fifth the maximum offset, as are the associated statics times. Of equal importance, the velocities are sufficiently accurate to correctly focus synthetic wavefields back to their initial point sources, so migration/datuming applications can also use these velocities. The method is applied to a real data example from the Timbalier Trench in the Gulf of Mexico, which exhibits the same essential features as the marine trench synthetic model. The Timbalier velocity inversion is geologically reasonable and yields long and short wavelength statics that improve the CMP gathers and stack and that correctly align reflections to known well markers. Turning‐ray tomography estimates near‐surface velocities accurately enough for the three purposes of lithology interpretation, statics calculations, and wavefield focusing for shallow migration and datuming.