Application of stratigraphic frameworks and thermochronological data on the Mesozoic SW Gondwana intraplate environment to retrieve the Paraná-Etendeka plume movement.

Author(s):  
Florian Krob ◽  
Ulrich A. Glasmacher ◽  
Hans-Peter Bunge ◽  
Anke M. Friedrich ◽  
Peter C. Hackspacher

<p>Since plate tectonics has been linked to material flow in the Earth’s mantle, it is commonly accepted that convective motion in the sublithospheric mantle results in vertical deflections and horizontal plate motion on the Earth’s surface. Those mantle flow-driven vertical deflections are recognized through significant signals and traces in the sedimentary records (unconformities and missing sections). Recently, Friedrich et al. (2018) introduced an event-based plume stratigraphic framework that uses such signals in the stratigraphic record to detect the geological evolution near, and on the Earth’s surface in areas of interregional scale caused by mantle plume movement. Information about these dynamic processes is stored in geological archives, such as (1) stratigraphic records of sedimentary basins and (2) thermochronological data sets of igneous, metamorphic, and sedimentary rocks.</p><p>For the first time, this research combines these two geological archives and applies them to the Mesozoic SW Gondwana intraplate environment to retrieve the Paraná-Etendeka plume movement prior to the Paraná-Etendeka LIP. We compiled 18 stratigraphic records of the major continental and marine sedimentary basins and over 35 thermochronological data sets including >1300 apatite fission-track ages surrounding the Paraná-Etendeka Large Igneous Province to test the event-based plume stratigraphic framework and its plume stratigraphic mapping to retrieve the timing and spatial distribution of the Paraná-Etendeka plume.</p><p>The plume stratigraphic mapping, using the stratigraphic records is suitable to demark a possible plume center, plume margins and distal regions (Friedrich et al., 2018). Thermochronological data reveal centers of a significant thermal Paraná-Etendeka plume influence. Both archives show significant signals and traces of mantle plume movement well in advance of the flood basalt eruptions. Our LTT data combined with stratigraphic records are modeled successfully with respect to a viable mantle plume driven thermal evolution and therefore, we suggest that thermochronological data, in combination with stratigraphy records have the potential to retrieve the Paraná-Etendeka plume movement.</p>

2021 ◽  
Author(s):  
Dietmar Müller

<p>Over the last 25 years the theory of plate tectonics and a growing set of geo-databases have been used to develop global plate models with increasing sophistication, enabled by open-source plate reconstruction software, particularly GPlates. Today’s editable open-access community models include networks of evolving plate boundaries and deforming regions, reflecting the fact that tectonic plates are not always rigid. The theory of plate tectonics was originally developed primarily based on magnetic anomaly and fracture zone data from the ocean basins. As a consequence there has been a focus on applying plate tectonics to modelling the Jurassic to present-day evolution of the Earth based on the record of preserved seafloor, or only modelling the motions of continents at earlier times. Modern plate models are addressing this shortcoming with recently developed technologies built upon the pyGPlates python library, utilising evolving plate boundary topologies to reconstruct entirely destroyed seafloor for the entire Phanerozoic. Uncertainties in these reconstructions are large and can represented with end-member scenarios. These models are paving the way for a multitude of applications aimed at better understanding Earth system evolution, connecting surface processes with the Earth’s mantle via plate tectonics. These models allow us to address questions such as: What are the causes of major perturbations in the interplay between tectonic plate motion and Earth’s deep interior? How do lithospheric deformation, mantle convection driven dynamic topography and climate change together drive regional changes in erosion and sedimentation? How are major perturbations of the plate-mantle system connected to environmental change, biological extinctions and species radiation?</p>


2021 ◽  
Author(s):  
Csilla Fodor ◽  
Péter Varga

<p>The nature, the age and probably first of all the magnitude of driving forces of plate motion since long are a subject of scientific debates and it cannot be regarded as clarified even today.</p><p>The physical basis of recent plate tectonics is characterized by interaction between plates by viscous coupling to a convecting mantle.  Authors are going to demonstrate that changes in the Earth's axial rotation can affect the movement of tectonic plates, and the phenomenon of tidal friction is able to shift the lithospheric plates.</p><p>The tidal friction regulates the length of day (LOD)and consequently also the rotational energy of the Earth. It can be investigated with the use of total tidal energy<sub>, </sub>which can be determined as a sum of three energies (energy of axial rotation of the Earth, Moon’s orbital energy around the common centre of mass and the mutual potential energy). It was found that during the last 3 Ga the Earth lost 33% of its rotational energy. The LOD 0.5Ga BP (before present) was ~21 h. This means that the rotational energy loss rate was 4.1 times higher during the Pz (Phanerozoic, from 560 Ma BP to our age) than earlier in the Arch (Archean, 4 to 2.5 Ga BP) and Ptz (Proterozoic 2.5 to0.56 Ga BP). The low-velocity zone (LVZ) at 100-200 km depth interval, close to the boundary between the lithosphere and the asthenosphere characterized by a negative anomaly of shear wave velocities. Consequently, the LVZ can result in a decoupling effect. Tidal friction brakes the lithosphere and the part of the Earth below the asthenosphere with different forces. By model calculation, we show that this force difference is sufficient to move the tectonic plates along the Earth’s surface.  </p><p>Reference: Varga P., Fodor Cs., 2021. About the energy and age of the plate tectonics, Terra Nova. (in print) https://doi.org/10.1111/ter.12518</p>


2021 ◽  
Vol 9 ◽  
Author(s):  
Thamer Z. Aldaajani ◽  
Khalid A. Almalki ◽  
Peter G. Betts

Mantle convection and the interaction of buoyant plumes with the lithosphere have been a significant influence on plate tectonics. Plume-lithosphere interactions have been regarded as a major driver of continental rifting, and have been linked to triple junction development and major supercontinent break-up events. There are also many extensional tectonic settings that lack evidence for a mantle plume and associated magmatism, indicating far-field plate stresses also drive plate fragmentation. The Arabian Plate is a spectacular active example where both a mantle plume and far-field plate stresses interact to drive continental break-up. Despite more than 80 years of geological research, there remains significant conjecture concerning the geodynamic processes responsible for the plate motion and the nature or onset of extension/deformation of the Arabian Plate. Complex structural patterns within the Arabian Plate have been interpreted in the context of tectonic plate movements and reorganization related to the subduction of the Tethys Oceanic plate, collision between Arabian and Eurasian plates, and the superposition of Afar plume. These interactions have accordingly resulted in different explanations or understanding of the geodynamic of the Afro-Arabian rift system. We assess the relative influence of plume vs. far field influences by reviewing the current views on the concept and models of these forces and highlighting their significance and implications on Arabia. Our synthesis shows that most of the geodynamical models proposed so far are not applicable to the entire Arabian Plate and its surrounding boundaries.


1993 ◽  
Vol 30 (2) ◽  
pp. 261-277 ◽  
Author(s):  
Jacob Verhoef ◽  
Walter R. Roest

The emergence and wide acceptance of plate tectonics has had a profound influence on the way we look at the Earth. Starting as a theory to explain similarities in coast lines across the Atlantic, plate tectonics has become a unifying theory in the earth sciences. In this paper, we describe the role of staff of the Geological Survey of Canada in the developing and refining of this theory. At the same time, we illustrate the effect plate tectonics has had on our understanding of the evolution of offshore eastern Canada. Of critical importance in this development was the unique data set collected by systematic surveying of this region, largely by the Geological Survey of Canada, making the Grand Banks of Newfoundland one of the best-studied offshore areas in the world. Plate tectonic theory not only offers a framework for the evolution of ocean basins, continental margins, and their sedimentary basins, but also for the assemblage of continents.


1997 ◽  
Vol 40 (4) ◽  
Author(s):  
O. Shields

Since the theory of plate tectonics was first proposed thirty years ago, some problems have arisen in its practical application. These call into question its fundamental assumptions of horizontal plate motion, hotspot fixity, true polar wander, Panthalassa, and the Earth’s constant size while leaving seafloor spreading and subduction intact. A rapidity expanding earth solves these problems and privides an alternative viewpoint worth reconsidering.


2021 ◽  
Author(s):  
Derya Guerer ◽  
Roi Granot ◽  
Douwe van Hinsbergen

Global plate reorganizations, intriguing but loosely defined periods of profoundly changing plate motions, may be caused by a single trigger such as a continental collision or a rising mantle plume. But whether and how such triggers propagate throughout a plate circuit remains unknown. Here, we show how a rising mantle plume set off a ‘plate tectonic chain reaction’. Plume rise has been shown to trigger formation of a subduction zone within the Neotethys Ocean between Africa and Eurasia at ~105 Ma. We provide new constraints on Africa-Eurasia convergence rates using variations in geomagnetic ‘noise’ within the Cretaceous Normal Superchron (the 126-83 Ma period without magnetic reversals) recorded in the Atlantic Quiet Zones crust. These new constraints are consistent with the timing of numerically predicted African Plate acceleration and deceleration associated with onset and arrest of the intra-Neotethyan subduction zone. The acceleration was associated with a change in Africa-Eurasia convergence direction, which in turn was accommodated by a next subduction initiation at ~85 Ma in the Alpine region that cascaded into regional tectonic events. Our concept of plate tectonic chain reactions shows how changes in plate motion, underpinned by mantle dynamics, may self-perpetuate through a plate circuit, making global plate reorganizations a key to unlock the driving mechanisms behind plate tectonics.


2020 ◽  
Vol 42 (3) ◽  
pp. 271-282
Author(s):  
OLEG IVANOV

The general characteristics of planetary systems are described. Well-known heat sources of evolution are considered. A new type of heat source, variations of kinematic parameters in a dynamical system, is proposed. The inconsistency of the perovskite-post-perovskite heat model is proved. Calculations of inertia moments relative to the D boundary on the Earth are given. The 9 times difference allows us to claim that the sliding of the upper layers at the Earth's rotation speed variations emit heat by viscous friction.This heat is the basis of mantle convection and lithospheric plate tectonics.


1999 ◽  
Vol 354 (1392) ◽  
pp. 1915-1919 ◽  
Author(s):  
Claude Allègre ◽  
Vincent Courtillot

The 20th century has been a century of scientific revolutions for many disciplines: quantum mechanics in physics, the atomic approach in chemistry, the nonlinear revolution in mathematics, the introduction of statistical physics. The major breakthroughs in these disciplines had all occurred by about 1930. In contrast, the revolutions in the so–called natural sciences, that is in the earth sciences and in biology, waited until the last half of the century. These revolutions were indeed late, but they were no less deep and drastic, and they occurred quite suddenly. Actually, one can say that not one but three revolutions occurred in the earth sciences: in plate tectonics, planetology and the environment. They occurred essentially independently from each other, but as time passed, their effects developed, amplified and started interacting. These effects continue strongly to this day.


2021 ◽  
Vol 124 (1) ◽  
pp. 141-162 ◽  
Author(s):  
J.F. Dewey ◽  
E.S. Kiseeva ◽  
J.A. Pearce ◽  
L.J. Robb

Abstract Space probes in our solar system have examined all bodies larger than about 400 km in diameter and shown that Earth is the only silicate planet with extant plate tectonics sensu stricto. Venus and Earth are about the same size at 12 000 km diameter, and close in density at 5 200 and 5 500 kg.m-3 respectively. Venus and Mars are stagnant lid planets; Mars may have had plate tectonics and Venus may have had alternating ca. 0.5 Ga periods of stagnant lid punctuated by short periods of plate turnover. In this paper, we contend that Earth has seen five, distinct, tectonic periods characterized by mainly different rock associations and patterns with rapid transitions between them; the Hadean to ca. 4.0 Ga, the Eo- and Palaeoarchaean to ca. 3.1 Ga, the Neoarchaean to ca. 2.5 Ga, the Proterozoic to ca. 0.8 Ga, and the Neoproterozoic and Phanerozoic. Plate tectonics sensu stricto, as we know it for present-day Earth, was operating during the Neoproterozoic and Phanerozoic, as witnessed by features such as obducted supra-subduction zone ophiolites, blueschists, jadeite, ruby, continental thin sediment sheets, continental shelf, edge, and rise assemblages, collisional sutures, and long strike-slip faults with large displacements. From rock associations and structures, nothing resembling plate tectonics operated prior to ca. 2.5 Ga. Archaean geology is almost wholly dissimilar from Proterozoic-Phanerozoic geology. Most of the Proterozoic operated in a plate tectonic milieu but, during the Archaean, Earth behaved in a non-plate tectonic way and was probably characterised by a stagnant lid with heat-loss by pluming and volcanism, together with diapiric inversion of tonalite-trondjemite-granodiorite (TTG) basement diapirs through sinking keels of greenstone supracrustals, and very minor mobilism. The Palaeoarchaean differed from the Neoarchaean in having a more blobby appearance whereas a crude linearity is typical of the Neoarchaean. The Hadean was probably a dry stagnant lid Earth with the bulk of its water delivered during the late heavy bombardment, when that thin mafic lithosphere was fragmented to sink into the asthenosphere and generate the copious TTG Ancient Grey Gneisses (AGG). During the Archaean, a stagnant unsegmented, lithospheric lid characterised Earth, although a case can be made for some form of mobilism with “block jostling”, rifting, compression and strike-slip faulting on a small scale. We conclude, following Burke and Dewey (1973), that there is no evidence for subduction on a global scale before about 2.5 Ga, although there is geochemical evidence for some form of local recycling of crustal material into the mantle during that period. After 2.5 Ga, linear/curvilinear deformation belts were developed, which “weld” cratons together and palaeomagnetism indicates that large, lateral, relative motions among continents had begun by at least 1.88 Ga. The “boring billion”, from about 1.8 to 0.8 Ga, was a period of two super-continents (Nuna, also known as Columbia, and Rodinia) characterised by substantial magmatism of intraplate type leading to the hypothesis that Earth had reverted to a single plate planet over this period; however, orogens with marginal accretionary tectonics and related magmatism and ore genesis indicate that plate tectonics was still taking place at and beyond the bounds of these supercontinents. The break-up of Rodinia heralded modern plate tectonics from about 0.8 Ga. Our conclusions are based, almost wholly, upon geological data sets, including petrology, ore geology and geochemistry, with minor input from modelling and theory.


Sign in / Sign up

Export Citation Format

Share Document