Observation of a Terrestrial Electron Beam during the tropical cyclone Joaninha in March 2019

Author(s):  
David Sarria ◽  
Pavlo Kochkin ◽  
Nikolai Østgaard ◽  
Andrew Mezentsev ◽  
Nikolai G. Lehtinen ◽  
...  

<p>Terrestrial Gamma-ray Flashes (TGFs) are short (~20 us to ~2 ms) flashes of high energy (< 40 MeV) photons, produced by thunderstorms When interacting with the atmosphere, the TGF’s photons produce relativistic electrons and positrons at higher altitudes, and a fraction is able to escape the atmosphere [1,2,3]. The electrons/positrons are then bounded to Earth's magnetic field lines and can travel large distances inside the ionosphere and the magnetosphere. This phenomenon is called a Terrestrial Electron Beam (TEB).</p><p>The Atmosphere-Space Interactions Monitor (ASIM), dedicated to the study of TGF and associated events, started to operate in June 2018. ASIM contains an optical instrument (MMIA) made of micro-cameras and photometers, as well the Modular X and Gamma-ray Sensor (MXGS) for high energy radiation. MXGS is composed of the low energy detector (LED, 50 keV to 400 keV) and the High Energy detector (HED, 300 keV to 40 MeV). </p><p>This presentation is focused on a new event which was detected on March 24, 2019. The TEB originated from rainbands produced by the tropical cyclone Joaninha, in the Indian Ocean, close to Madagascar. This observation shows, for the first time to our knowledge: (1) the low energy part (>50 keV) of the TEB spectrum, using the LED, (2) an estimate of the incoming direction (to ISS) of the electron Beam from recorded data.</p><p>References:</p><p>[1] J. R., Dwyer, B. W., Grefenstette and D. M. Smith. High-energy electron beams launched into space by thunderstorms. DOI: 10.1029/2007GL032430. Geophysical Research Letters, 2008.</p><p>[2] B. E. Carlson T. Gjesteland N. Østgaard. Terrestrial gamma-ray flash electron beam geometry, fluence, and detection frequency. DOI: 10.1029/2011JA016812. Journal of Geophysical Research (Space Physics), 2011.</p><p>[3] D. Sarria, P. Kochkin, N. Østgaard et al. The First Terrestrial Electron Beam Observed by the Atmosphere-Space Interactions Monitor. DOI: 10.1029/2019JA027071. Journal of Geophysical Research (Space Physics), 2019.</p>

2021 ◽  
Author(s):  
David Sarria ◽  
Nikolai Østgaard ◽  
Pavlo Kochkin ◽  
Nikolai Lehtinen ◽  
Andrew Mezentsev ◽  
...  

<p>Terrestrial Gamma-ray Flashes (TGFs) are short flashes of high energy photons, produced by thunderstorms. When interacting with the atmosphere, they produce relativistic electrons and positrons, and a part gets bounded to geomagnetic field lines and travels large distances in space. This phenomenon is called a Terrestrial Electron Beam (TEB). The Atmosphere-Space Interactions Monitor (ASIM) mounted on-board the International Space Station detected a new TEB event on March 24, 2019, originating from a tropical cyclone, Johanina. Using ASIM's low energy detector, the TEB energy spectrum is resolved down to 50 keV. We provide a new method to contrain the TGF source spectrum based on the detected TEB spectrum. Applied to this event, it shows that only fully developed RREA spectrums are compatible with the observation. More specifically, assuming a TGF spectrum proportional to 1/E exp(-E/ε), the compatible models have ε ≥ 6.5 MeV. We could not exclude models with ε of 8 and 10 MeV. This is the first time the source energy spectrum of a TGF is contrained based on the detection of the associated TEB.</p>


2021 ◽  
Author(s):  
Anders Lindanger ◽  
Martino Marisaldi ◽  
David Sarria ◽  
Nikolai Østgaard ◽  
Nikolai Lehtinen ◽  
...  

<p>Terrestrial Gamma-ray Flashes (TGFs) are sub-millisecond bursts of high-energy photons associated with lightning flashes in thunderstorms. The Atmosphere-Space Interactions Monitor (ASIM), launched in April 2018, is the first space mission specifically designed to detect TGFs. We will mainly focus on data from the High Energy Detector (HED) which is sensitive to photons with energies from 300 keV to > 30 MeV, and include data from the Low Energy Detector (LED) sensitive in 50 keV to 370 keV energy range. Both HED and LED are part of the Modular X- and Gamma-ray Sensor (MXGS) of ASIM.</p><p>The energy spectrum of TGFs, together with Monte Carlo simulations, can provide information on the production altitude and beaming geometry of TGFs. Constraints have already been set on the production altitude and beaming geometry using other spacecraft and radio measurements. Some of these studies are based on cumulative spectra of a large number of TGFs (e.g. [1]), which smooth out individual variability. The spectral analysis of individual TGFs has been carried out up to now for Fermi TGFs only, showing spectral diversity [2]. Crucial key factors for individual TGF spectral analysis are a large number of counts, an energy range extended to several tens of MeV, a good energy calibration as well as knowledge and control of any instrumental effects affecting the measurements.</p><p>Thanks to ASIM’s large effective area and low orbital altitude, single TGFs detected by ASIM have much more count statistics than observations from other spacecraft capable of detecting TGFs. By comparing Monte Carlo simulations to the energy spectrum from single ASIM TGFs we will aim to put stricter constraints on the production altitude and beaming geometry of TGFs. We will present the dataset, method, and some results of the spectral analysis of individual TGFs.</p><p>References:</p><p>1. Dwyer, J. R., and D. M. Smith (2005), A comparison between Monte Carlo simulations of runaway breakdown and terrestrial gamma-ray flash observations, Geophys. Res. Lett., 32, L22804, doi:10.1029/2005GL023848.</p><p>2. Mailyan et al. (2016), The spectroscopy of individual terrestrial gamma-ray flashes: Constraining the source properties, J. Geophys. Res. Space Physics, 121, 11,346–11,363, doi:10.1002/2016JA022702.</p>


1995 ◽  
Vol 151 ◽  
pp. 78-79
Author(s):  
I.Yu. Alekseev ◽  
N.N. Chalenko ◽  
V.P. Fomin ◽  
R.E. Gershberg ◽  
O.R. Kalekin ◽  
...  

During the 1994 coordinated observations of the red dwarf flare star EV Lac, the star was monitored in the very high energy (VHE) γ-ray range around 1012 eV with the Crimean ground-based γ-ray telescope GT-48. This telescope consists of two identical optical systems (Vladimirsky et al. 1994) which were directed in parallel on EV Lac.The detection principle of the VHE γ-rays is based on the Čerenkov radiation emitted by relativistic electrons and positrons. The latter are generated in the interaction of the γ-rays with nuclei in the Earth’s atmosphere that leads to an appearance of a shower of charged particles and γ-quanta. The duration of the Cherenkov radiation flash is very short, just about a few nanoseconds. The angular size of the shower is ∼ 1°. To detect such flashes we use an optical system with large area mirrors and a set of 37 photomultipliers (PMs) in the focal plane. Using the information from these PMs which are spaced hexagonally and correspond to a field of view of 2°.6 on the sky, we can obtain the image of an optical flash. The electronic device permits us to detect nanosecond flashes (40 ns exposure time and 12 μs readout dead-time).


1994 ◽  
Vol 159 ◽  
pp. 39-48
Author(s):  
J. D. Kurfess

The principal results on active galactic nuclei from the Phase 1 observations by the COMPTON Gamma Ray Observatory are presented. These include the detection of a new class of high-energy gamma ray sources by the EGRET instrument and extensive observations of Seyfert galaxies in low-energy gamma rays by OSSE. The identified EGRET sources are associated with core-dominated radio loud objects, OVV's and BL Lacs. EGRET has not detected any Seyfert galaxies. OSSE observes a thermal-like spectrum from NGC 4151, and the low-energy gamma ray spectra of other Seyferts are significantly softer than the spectra below 50 keV, suggesting that a thermal emission mechanism is characteristic of these objects. OSSE has not detected any positron annihilation radiation from any Seyfert, and neither OSSE nor COMPTEL have detected an MeV excess from these sources.


2020 ◽  
Author(s):  
Anders Lindanger ◽  
Martino Marisaldi ◽  
Nikolai Østgaard ◽  
Andrey Mezentsev ◽  
Torstein Neubert ◽  
...  

<p>Terrestrial Gamma-ray Flashes (TGFs) are sub milliseconds bursts of high energy photons associated with lightning flashes in thunderstorms. The Atmosphere-Space Interactions Monitor (ASIM), launched in April 2018, is the first space mission specifically designed to detect TGFs. We will mainly focus on data from the High Energy Detector (HED) which is sensitive to photons with energies from 300 keV to > 30 MeV, and include data from the Low Energy Detector (LED) sensitive in 50 keV to 370 keV energy range. Both HED and LED are part of the Modular X- and Gamma-ray Sensor (MXGS) of ASIM.<br><br>The energy spectrum of TGFs, together with Monte Carlo simulations, can provide information on the production altitude and beaming geometry of TGFs. Constraints have already been set on the production altitude and beaming geometry using other spacecraft and radio measurements. Some of these studies are based on cumulative spectra of a large number of TGFs (e.g. [1]), which smooth out individual variability. The spectral analysis of individual TGFs has been carried out up to now for Fermi TGFs only, showing spectral diversity [2]. Crucial key factors for individual TGF spectral analysis are a large number of counts, an energy range extended to several tens of MeV, a good energy calibration as well as knowledge and control of any instrumental effects affecting the measurements.</p><p>We strive to put stricter constraints on the production altitude and beaming geometry, by comparing Monte Carlo simulations to energy spectra from single ASIM TGFs. We will present the dataset and method, including the correction for instrumental effects, and preliminary results on individual TGFs.</p><p>Thanks to ASIM’s large effective area and low orbital altitude, single TGFs detected by ASIM have much more count statistics than observations from other spacecrafts capable of detecting TGFs. ASIM has detected over 550 TGFs up to date (January 2020), and ~115 have more than 100 counts. This allows for a large sample for individual spectral analysis.</p><p>References:</p><ol><li>Dwyer, J. R., and D. M. Smith (2005), A comparison between Monte Carlo simulations of runaway breakdown and terrestrial gamma-ray flash observations, Geophys. Res. Lett., 32, L22804, doi:10.1029/2005GL023848.</li> <li>Mailyan et al. (2016), The spectroscopy of individual terrestrial gamma-ray flashes: Constraining the source properties, J. Geophys. Res. Space Physics, 121, 11,346–11,363, doi:10.1002/2016JA022702.</li> </ol>


2014 ◽  
Vol 10 (S313) ◽  
pp. 97-98
Author(s):  
Kenji Yoshida

AbstractSymmetric and triangle-shaped flux variability in X-ray and gamma-ray light curves is observed from many blazars. We derived the X-ray spectrum changing in time by using a kinetic equation of high energy electrons. Giving linearly changing the injection of low energy electrons into accelerating and emitting region, we obtained the preliminary results that represent the characteristic X-ray variability of the linear flux increase with hardening in the rise phase and the linear decrease with softening in the decay phase.


Author(s):  
D. Mitro ◽  
S. Subramanian ◽  
S. (Wai Lung) Yeung ◽  
T. Chrastecky ◽  
B. Hagedorn ◽  
...  

Abstract Ultra-thin (<100 nm) flakes shorting metal lines are difficult to detect and often cause the device to fail after reliability stress or at the customer site. In most cases, the common technique of inspecting the device in an optical microscope followed by conventional low energy (<3.0 kV) scanning electron microscopy (SEM) is often not able to detect this type of defect. In rare cases, where the defect is successfully exposed by the traditional procedure, it is very challenging to perform additional transmission electron microscopy (TEM) characterization of the defect without introducing arifacts during sample preparation of the exposed flake. A new procedure to identify these defects using a combination of face-lapping and high energy (>10 kV) SEM imaging is described in this paper. In this method, the failing device is carefully face-lapped and inspected frequently using a high energy (>10 kV) scanning electron beam. The high energy electron beam penetrates through the oxide layer and detects features embedded below the oxide. This technique greatly incresases the chances of detecting the flake, as the method is capable of detecting the defect at a larger range of oxide thickness as opposed to the traditional method. Additionally, TEM results were improved when the ultra-thin flakes were detected below the surface with the high energy SEM technique. Several examples of ultra-thin flakes found using the high energy SEM vs. low energy SEM will be presented.


1993 ◽  
Vol 416 ◽  
pp. L53 ◽  
Author(s):  
Y. C. Lin ◽  
D. L. Bertsch ◽  
B. L. Dingus ◽  
C. E. Fichtel ◽  
R. C. Hartman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document