A NLS-4Dvar Assimilation System of Surface PM2.5 with WRF-CMAQ Model : Observing System Simulation Experiments

Author(s):  
Shan Zhang ◽  
Xiangjun Tian ◽  
Hongqin Zhang ◽  
Xiao Han ◽  
Meigen Zhang

<p>        While complete atmospheric chemical transport models have been developed to understanding the complex interactions of atmospheric chemistry and physics, there are large uncertainties in numerical approaches. Data assimilation is an efficient method to improve model forecast of aerosols with optimized initial conditions. We have developed a new framework for assimilating surface fine particulate matter (PM<sub>2.5</sub>) observations in coupled Weather Research and Forecasting (WRF) model and Community Multiscale Air Quality (CMAQ) model, based on nonlinear least squares four-dimensional variational (NLS-4DVar) data assimilation method. The NLS-4DVar approach, which does not require the tangent and adjoint models, has been extensive used in meteorological and environmental areas due to the low computational complexity. Two parallel experiments were designed in the observing system simulation experiments (OSSEs) to evaluate the effectiveness of this system. Hourly PM2.5 observations over China be assimilated in WRF-CMAQ model with 6-h assimilation window, while the background state without data assimilation is conducted as control experiment. The results show that the assimilation significantly reduced the uncertainties of initial conditions (ICs) for WRF-CMAQ model and leads to better forecast. The newly developed PM<sub>2.5</sub> data assimilation system can improve PM<sub>2.5</sub> prediction effectively and easily. In the future, we expect emission to be optimized together with concentrations, and integrate meteorological assimilation into aerosol assimilation system.</p>

2015 ◽  
Vol 32 (9) ◽  
pp. 1593-1613 ◽  
Author(s):  
Robert Atlas ◽  
Ross N. Hoffman ◽  
Zaizhong Ma ◽  
G. David Emmitt ◽  
Sidney A. Wood ◽  
...  

AbstractThe potential impact of Doppler wind lidar (DWL) observations from a proposed optical autocovariance wind lidar (OAWL) instrument is quantified in observing system simulation experiments (OSSEs). The OAWL design would provide profiles of useful wind vectors along a ground track to the left of the International Space Station (ISS), which is in a 51.6° inclination low-Earth orbit (LEO). These observations are simulated realistically, accounting for cloud and aerosol distributions inferred from the OSSE nature runs (NRs), and measurement and sampling error sources. The impact of the simulated observations is determined in both global and regional OSSE frameworks. The global OSSE uses the ECMWF T511 NR and the NCEP operational Global Data Assimilation System at T382 resolution. The regional OSSE uses an embedded hurricane NR and the NCEP operational HWRF data assimilation system with outer and inner domains of 9- and 3-km resolution, respectively.The global OSSE results show improved analyses and forecasts of tropical winds and extratropical geopotential heights. The tropical wind RMSEs are significantly reduced in the analyses and in short-term forecasts. The tropical wind improvement decays as the forecasts lengthen. The regional OSSEs are limited but show some improvements in hurricane track and intensity forecasts.


2009 ◽  
Vol 137 (11) ◽  
pp. 4011-4029 ◽  
Author(s):  
Soichiro Sugimoto ◽  
N. Andrew Crook ◽  
Juanzhen Sun ◽  
Qingnong Xiao ◽  
Dale M. Barker

Abstract The purpose of this study is to investigate the performance of 3DVAR radar data assimilation in terms of the retrievals of convective fields and their impact on subsequent quantitative precipitation forecasts (QPFs). An assimilation methodology based on the Weather Research and Forecasting (WRF) model three-dimensional variational data assimilation (3DVAR) and a cloud analysis scheme is described. Simulated data from 25 Weather Surveillance Radar-1988 Doppler (WSR-88D) radars are assimilated, and the potential benefits and limitations of the assimilation are quantitatively evaluated through observing system simulation experiments of a dryline that occurred over the southern Great Plains. Results indicate that the 3DVAR system is able to analyze certain mesoscale and convective-scale features through the incorporation of radar observations. The assimilation of all possible data (radial velocity and reflectivity factor data) results in the best performance on short-range precipitation forecasting. The wind retrieval by assimilating radial velocities is of primary importance in the 3DVAR framework and the storm case applied, and the use of multiple-Doppler observations improves the retrieval of the tangential wind component. The reflectivity factor assimilation is also beneficial especially for strong precipitation. It is demonstrated that the improved initial conditions through the 3DVAR analysis lead to improved skills on QPF.


2016 ◽  
Vol 31 (1) ◽  
pp. 217-236 ◽  
Author(s):  
María E. Dillon ◽  
Yanina García Skabar ◽  
Juan Ruiz ◽  
Eugenia Kalnay ◽  
Estela A. Collini ◽  
...  

Abstract Improving the initial conditions of short-range numerical weather prediction (NWP) models is one of the main goals of the meteorological community. Development of data assimilation and ensemble forecast systems is essential in any national weather service (NWS). In this sense, the local ensemble transform Kalman filter (LETKF) is a methodology that can satisfy both requirements in an efficient manner. The Weather Research and Forecasting (WRF) Model coupled with the LETKF, developed at the University of Maryland, College Park, have been implemented experimentally at the NWS of Argentina [Servicio Meteorológico Nacional (SMN)], but at a somewhat lower resolution (40 km) than the operational Global Forecast System (GFS) at that time (27 km). The purpose of this work is not to show that the system presented herein is better than the higher-resolution GFS, but that its performance is reasonably comparable, and to provide the basis for a continued improved development of an independent regional data assimilation and forecasting system. The WRF-LETKF system is tested during the spring of 2012, using the prepared or quality controlled data in Binary Universal Form for Representation of Meteorological Data (PREPBUFR) observations from the National Centers for Environmental Prediction (NCEP) and lateral boundary conditions from the GFS. To assess the effect of model error, a single-model LETKF system (LETKF-single) is compared with a multischeme implementation (LETKF-multi), which uses different boundary layer and cumulus convection schemes for the generation of the ensemble of forecasts. The performance of both experiments during the test period shows that the LETKF-multi usually outperforms the LETKF-single, evidencing the advantages of the use of the multischeme approach. Both data assimilation systems are slightly worse than the GFS in terms of the synoptic environment representation, as could be expected given their lower resolution. Results from a case study of a strong convective system suggest that the LETKF-multi improves the location of the most intense area of precipitation with respect to the LETKF-single, although both systems show an underestimation of the total accumulated precipitation. These preliminary results encourage continuing the development of an operational data assimilation system based on WRF-LETKF at the SMN.


2013 ◽  
Vol 6 (2) ◽  
pp. 3581-3610
Author(s):  
S. Federico

Abstract. This paper presents the current status of development of a three-dimensional variational data assimilation system. The system can be used with different numerical weather prediction models, but it is mainly designed to be coupled with the Regional Atmospheric Modelling System (RAMS). Analyses are given for the following parameters: zonal and meridional wind components, temperature, relative humidity, and geopotential height. Important features of the data assimilation system are the use of incremental formulation of the cost-function, and the use of an analysis space represented by recursive filters and eigenmodes of the vertical background error matrix. This matrix and the length-scale of the recursive filters are estimated by the National Meteorological Center (NMC) method. The data assimilation and forecasting system is applied to the real context of atmospheric profiling data assimilation, and in particular to the short-term wind prediction. The analyses are produced at 20 km horizontal resolution over central Europe and extend over the whole troposphere. Assimilated data are vertical soundings of wind, temperature, and relative humidity from radiosondes, and wind measurements of the European wind profiler network. Results show the validity of the analysis solutions because they are closer to the observations (lower RMSE) compared to the background (higher RMSE), and the differences of the RMSEs are consistent with the data assimilation settings. To quantify the impact of improved initial conditions on the short-term forecast, the analyses are used as initial conditions of a three-hours forecast of the RAMS model. In particular two sets of forecasts are produced: (a) the first uses the ECMWF analysis/forecast cycle as initial and boundary conditions; (b) the second uses the analyses produced by the 3-D-Var scheme as initial conditions, then is driven by the ECMWF forecast. The improvement is quantified by considering the horizontal components of the wind, which are measured at a-synoptic times by the European wind profiler network. The results show that the RMSE is effectively reduced at the short range (1–2 h). The results are in agreement with the set-up of the numerical experiment.


Icarus ◽  
2010 ◽  
Vol 209 (2) ◽  
pp. 470-481 ◽  
Author(s):  
Matthew J. Hoffman ◽  
Steven J. Greybush ◽  
R. John Wilson ◽  
Gyorgyi Gyarmati ◽  
Ross N. Hoffman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document