Impact of lateral boundary and initial conditions in the prediction of Bay of Bengal cyclones using WRF model and its 3D-VAR data assimilation system

2018 ◽  
Vol 175 ◽  
pp. 64-75 ◽  
Author(s):  
K.S. Singh ◽  
Prasad K. Bhaskaran
2016 ◽  
Vol 31 (1) ◽  
pp. 217-236 ◽  
Author(s):  
María E. Dillon ◽  
Yanina García Skabar ◽  
Juan Ruiz ◽  
Eugenia Kalnay ◽  
Estela A. Collini ◽  
...  

Abstract Improving the initial conditions of short-range numerical weather prediction (NWP) models is one of the main goals of the meteorological community. Development of data assimilation and ensemble forecast systems is essential in any national weather service (NWS). In this sense, the local ensemble transform Kalman filter (LETKF) is a methodology that can satisfy both requirements in an efficient manner. The Weather Research and Forecasting (WRF) Model coupled with the LETKF, developed at the University of Maryland, College Park, have been implemented experimentally at the NWS of Argentina [Servicio Meteorológico Nacional (SMN)], but at a somewhat lower resolution (40 km) than the operational Global Forecast System (GFS) at that time (27 km). The purpose of this work is not to show that the system presented herein is better than the higher-resolution GFS, but that its performance is reasonably comparable, and to provide the basis for a continued improved development of an independent regional data assimilation and forecasting system. The WRF-LETKF system is tested during the spring of 2012, using the prepared or quality controlled data in Binary Universal Form for Representation of Meteorological Data (PREPBUFR) observations from the National Centers for Environmental Prediction (NCEP) and lateral boundary conditions from the GFS. To assess the effect of model error, a single-model LETKF system (LETKF-single) is compared with a multischeme implementation (LETKF-multi), which uses different boundary layer and cumulus convection schemes for the generation of the ensemble of forecasts. The performance of both experiments during the test period shows that the LETKF-multi usually outperforms the LETKF-single, evidencing the advantages of the use of the multischeme approach. Both data assimilation systems are slightly worse than the GFS in terms of the synoptic environment representation, as could be expected given their lower resolution. Results from a case study of a strong convective system suggest that the LETKF-multi improves the location of the most intense area of precipitation with respect to the LETKF-single, although both systems show an underestimation of the total accumulated precipitation. These preliminary results encourage continuing the development of an operational data assimilation system based on WRF-LETKF at the SMN.


2013 ◽  
Vol 6 (2) ◽  
pp. 3581-3610
Author(s):  
S. Federico

Abstract. This paper presents the current status of development of a three-dimensional variational data assimilation system. The system can be used with different numerical weather prediction models, but it is mainly designed to be coupled with the Regional Atmospheric Modelling System (RAMS). Analyses are given for the following parameters: zonal and meridional wind components, temperature, relative humidity, and geopotential height. Important features of the data assimilation system are the use of incremental formulation of the cost-function, and the use of an analysis space represented by recursive filters and eigenmodes of the vertical background error matrix. This matrix and the length-scale of the recursive filters are estimated by the National Meteorological Center (NMC) method. The data assimilation and forecasting system is applied to the real context of atmospheric profiling data assimilation, and in particular to the short-term wind prediction. The analyses are produced at 20 km horizontal resolution over central Europe and extend over the whole troposphere. Assimilated data are vertical soundings of wind, temperature, and relative humidity from radiosondes, and wind measurements of the European wind profiler network. Results show the validity of the analysis solutions because they are closer to the observations (lower RMSE) compared to the background (higher RMSE), and the differences of the RMSEs are consistent with the data assimilation settings. To quantify the impact of improved initial conditions on the short-term forecast, the analyses are used as initial conditions of a three-hours forecast of the RAMS model. In particular two sets of forecasts are produced: (a) the first uses the ECMWF analysis/forecast cycle as initial and boundary conditions; (b) the second uses the analyses produced by the 3-D-Var scheme as initial conditions, then is driven by the ECMWF forecast. The improvement is quantified by considering the horizontal components of the wind, which are measured at a-synoptic times by the European wind profiler network. The results show that the RMSE is effectively reduced at the short range (1–2 h). The results are in agreement with the set-up of the numerical experiment.


2017 ◽  
Author(s):  
Wei He ◽  
Ivar R. van der Velde ◽  
Arlyn E. Andrews ◽  
Colm Sweeney ◽  
John Miller ◽  
...  

Abstract. We have implemented a regional carbon dioxide data assimilation system based on the CarbonTracker Data Assimilation Shell (CTDAS) and a high-resolution Lagrangian transport model, the Stochastic Time-Inverted Lagrangian Transport model driven by the Weather Forecast and Research meteorological fields (WRF-STILT). With this system, named as CTDAS‑Lagrange, we simultaneously optimize terrestrial biosphere fluxes and four parameters that adjust the lateral boundary conditions (BCs) against CO2 observations from the NOAA ESRL North America tall tower and aircraft Programmable Flask Packages (PFPs) sampling program. Least-squares optimization is performed with a time-stepping ensemble Kalman smoother, over a time window of 10 days and assimilating sequentially a time series of observations. Because the WRF-STILT footprints are pre-computed, it is computationally efficient to run the CTDAS-Lagrange system. To estimate the uncertainties of the optimized fluxes from the system, we performed sensitivity tests with various a priori biosphere fluxes (SiBCASA, SiB3, CT2013B) and BCs (optimized mole fraction fields from CT2013B and CTE2014, and an empirical data set derived from aircraft observations), as well as with a variety of choices on the ways that fluxes are adjusted (additive or multiplicative), covariance length scales, biosphere flux covariances, BC parameter uncertainties, and model-data mismatches. In pseudo-data experiments, we show that in our implementation the additive flux adjustment method is more flexible in optimizing NEE than the multiplicative flux adjustment method, and that the CTDAS-Lagrange system has the ability to correct for the potential biases in the lateral boundary conditions and to resolve large biases in the prior biosphere fluxes. Using real observations, we have derived a range of estimates for the optimized carbon fluxes from a series of sensitivity tests, which places the North American carbon sink for the year 2010 in a range from −0.92 to −1.26 PgC/yr. This is comparable to the TM5-based estimates of CarbonTracker (version CT2016, −0.91 ± 1.10 PgC/yr) and CarbonTracker Europe (version CTE2016, −0.91 ± 0.31 PgC/yr). We conclude that CTDAS-Lagrange can offer a versatile and computationally attractive alternative to these global systems for regional estimates of carbon fluxes, which can take advantage of high-resolution Lagrangian footprints that are increasingly easy to obtain.


2014 ◽  
Vol 142 (10) ◽  
pp. 3586-3613 ◽  
Author(s):  
A. Routray ◽  
S. C. Kar ◽  
P. Mali ◽  
K. Sowjanya

Abstract In a variational data assimilation system, background error statistics (BES) spread the influence of the observations in space and filter analysis increments through dynamic balance or statistical relationships. In a data-sparse region such as the Bay of Bengal, BES play an important role in defining the location and structure of monsoon depressions (MDs). In this study, the Indian-region-specific BES have been computed for the Weather Research and Forecasting (WRF) three-dimensional variational data assimilation system. A comparative study using single observation tests is carried out using the computed BES and global BES within the WRF system. Both sets of BES are used in the assimilation cycles and forecast runs for simulating the meteorological features associated with the MDs. Numerical experiments have been conducted to assess the relative impact of various BES in the analysis and simulations of the MDs. The results show that use of regional BES in the assimilation cycle has a positive impact on the prediction of the location, propagation, and development of rainbands associated with the MDs. The track errors of MDs are smaller when domain-specific BES are used in the assimilation cycle. Additional experiments have been conducted using data from the Interim European Centre for Medium-Range Weather Forecasts Re-Analysis (ERA-Interim) as initial and boundary conditions (IBCs) in the assimilation cycle. The results indicate that the use of domain-dependent BES and high-resolution ERA-I data as IBCs further improved the initial conditions for the model leading to better forecasts of the MDs.


2015 ◽  
Vol 143 (11) ◽  
pp. 4660-4677 ◽  
Author(s):  
Stephen G. Penny ◽  
David W. Behringer ◽  
James A. Carton ◽  
Eugenia Kalnay

Abstract Seasonal forecasting with a coupled model requires accurate initial conditions for the ocean. A hybrid data assimilation has been implemented within the National Centers for Environmental Prediction (NCEP) Global Ocean Data Assimilation System (GODAS) as a future replacement of the operational three-dimensional variational data assimilation (3DVar) method. This Hybrid-GODAS provides improved representation of model uncertainties by using a combination of dynamic and static background error covariances, and by using an ensemble forced by different realizations of atmospheric surface conditions. An observing system simulation experiment (OSSE) is presented spanning January 1991 to January 1999, with a bias imposed on the surface forcing conditions to emulate an imperfect model. The OSSE compares the 3DVar used by the NCEP Climate Forecast System (CFSv2) with the new hybrid, using simulated in situ ocean observations corresponding to those used for the NCEP Climate Forecast System Reanalysis (CFSR). The Hybrid-GODAS reduces errors for all prognostic model variables over the majority of the experiment duration, both globally and regionally. Compared to an ensemble Kalman filter (EnKF) used alone, the hybrid further reduces errors in the tropical Pacific. The hybrid eliminates growth in biases of temperature and salinity present in the EnKF and 3DVar, respectively. A preliminary reanalysis using real data shows that reductions in errors and biases are qualitatively similar to the results from the OSSE. The Hybrid-GODAS is currently being implemented as the ocean component in a prototype next-generation CFSv3, and will be used in studies by the Climate Prediction Center to evaluate impacts on ENSO prediction.


2020 ◽  
Author(s):  
Shan Zhang ◽  
Xiangjun Tian ◽  
Hongqin Zhang ◽  
Xiao Han ◽  
Meigen Zhang

<p>        While complete atmospheric chemical transport models have been developed to understanding the complex interactions of atmospheric chemistry and physics, there are large uncertainties in numerical approaches. Data assimilation is an efficient method to improve model forecast of aerosols with optimized initial conditions. We have developed a new framework for assimilating surface fine particulate matter (PM<sub>2.5</sub>) observations in coupled Weather Research and Forecasting (WRF) model and Community Multiscale Air Quality (CMAQ) model, based on nonlinear least squares four-dimensional variational (NLS-4DVar) data assimilation method. The NLS-4DVar approach, which does not require the tangent and adjoint models, has been extensive used in meteorological and environmental areas due to the low computational complexity. Two parallel experiments were designed in the observing system simulation experiments (OSSEs) to evaluate the effectiveness of this system. Hourly PM2.5 observations over China be assimilated in WRF-CMAQ model with 6-h assimilation window, while the background state without data assimilation is conducted as control experiment. The results show that the assimilation significantly reduced the uncertainties of initial conditions (ICs) for WRF-CMAQ model and leads to better forecast. The newly developed PM<sub>2.5</sub> data assimilation system can improve PM<sub>2.5</sub> prediction effectively and easily. In the future, we expect emission to be optimized together with concentrations, and integrate meteorological assimilation into aerosol assimilation system.</p>


2005 ◽  
Vol 133 (4) ◽  
pp. 829-843 ◽  
Author(s):  
Milija Zupanski ◽  
Dusanka Zupanski ◽  
Tomislava Vukicevic ◽  
Kenneth Eis ◽  
Thomas Vonder Haar

A new four-dimensional variational data assimilation (4DVAR) system is developed at the Cooperative Institute for Research in the Atmosphere (CIRA)/Colorado State University (CSU). The system is also called the Regional Atmospheric Modeling Data Assimilation System (RAMDAS). In its present form, the 4DVAR system is employing the CSU/Regional Atmospheric Modeling System (RAMS) nonhydrostatic primitive equation model. The Weather Research and Forecasting (WRF) observation operator is used to access the observations, adopted from the WRF three-dimensional variational data assimilation (3DVAR) algorithm. In addition to the initial conditions adjustment, the RAMDAS includes the adjustment of model error (bias) and lateral boundary conditions through an augmented control variable definition. Also, the control variable is defined in terms of the velocity potential and streamfunction instead of the horizontal winds. The RAMDAS is developed after the National Centers for Environmental Prediction (NCEP) Eta 4DVAR system, however with added improvements addressing its use in a research environment. Preliminary results with RAMDAS are presented, focusing on the minimization performance and the impact of vertical correlations in error covariance modeling. A three-dimensional formulation of the background error correlation is introduced and evaluated. The Hessian preconditioning is revisited, and an alternate algebraic formulation is presented. The results indicate a robust minimization performance.


2020 ◽  
Author(s):  
Anthony Mucia ◽  
Clément Albergel ◽  
Bertrand Bonan ◽  
Yongjun Zheng ◽  
Jean-Christophe Calvet

<p>LDAS-Monde is a global Land Data Assimilation System developed in the research department of Météo-France (CNRM) to monitor Land Surface Variables (LSVs) at various scales, from regional to global. With LDAS-Monde, it is possible to assimilate satellite derived observations of Surface Soil Moisture (SSM) and Leaf Area Index (LAI) e.g. from the Copernicus Global Land Service (CGLS). It is an offline system normally driven by atmospheric reanalyses such as ECMWF ERA5.</p><p>In this study we investigate LDAS-Monde ability to use atmospheric forecasts to predict LSV states up to weeks in advance. In addition to the accuracy of the forecast predictions, the impact of the initialization on the LSVs forecast is addressed. To perform this study, LDAS-Monde is forced by a fifteen-day forecast from ECMWF for the 2017-2018 period over the Contiguous United States (CONUS) at 0.2<sup>o</sup> x 0.2<sup>o</sup> spatial resolution. These LSVs forecasts are initialized either by the model alone (LDAS-Monde open-loop, no assimilation, Fc_ol) or by the analysis (assimilation of SSM and LAI, Fc_an). These two sets of forecast are then assessed using satellite derived observations of SSM and LAI, evapotranspiration estimates, as well as in situ measurements of soil moisture from the U.S. Climate Reference Network (USCRN). Results indicate that for the three evaluation variables (SSM, LAI, and evapotranspiration), LDAS-Monde provides reasonably accurate predictions two weeks in advance. Additionally, the initial conditions are shown to make a positive impact with respect to LAI, evapotranspiration, and deeper layers of soil moisture when using Fc_an. Moreover, this impact persists in time, particularly for vegetation related variables. Other model variables (such as runoff and drainage) are also affected by the initial conditions. Future work will focus on the transfer of this predictive information from a research to stakeholder tool.</p>


2012 ◽  
Vol 29 (10) ◽  
pp. 1542-1557 ◽  
Author(s):  
Matthew J. Hoffman ◽  
Takemasa Miyoshi ◽  
Thomas W. N. Haine ◽  
Kayo Ide ◽  
Christopher W. Brown ◽  
...  

Abstract An advanced data assimilation system, the local ensemble transform Kalman filter (LETKF), has been interfaced with a Regional Ocean Modeling System (ROMS) implementation on the Chesapeake Bay (ChesROMS) as a first step toward a reanalysis and improved forecast system for the Chesapeake Bay. The LETKF is among the most advanced data assimilation methods and is very effective for large, nonlinear dynamical systems with sparse data coverage. Errors in the Chesapeake Bay system are due more to errors in forcing than errors in initial conditions. To account for forcing errors, a forcing ensemble is used to drive the ensemble states for the year 2003. In the observing system simulation experiments (OSSEs) using the ChesROMS-LETKF system presented here, the filter converges quickly and greatly reduces the analysis and subsequent forecast errors in the temperature, salinity, and current fields in the presence of errors in wind forcing. Most of the improvement in temperature and currents comes from satellite sea surface temperature (SST), while in situ salinity profiles provide improvement to salinity. Corrections permeate through all vertical levels and some correction to stratification is seen in the analysis. In the upper Bay where the nature-run summer stratification is −0.2 salinity units per meter, stratification is improved from −0.01 per meter in the unassimilated model to −0.16 per meter in the assimilation. Improvements are seen in other parts of the Bay as well. The results from the OSSEs are promising for assimilating real data in the future.


Sign in / Sign up

Export Citation Format

Share Document