scholarly journals Evidence for atmosphere-ocean meridional energy transport compensation in the past decades

Author(s):  
Wilco Hazeleger ◽  
Yang Liu ◽  
Jisk Attema

<p><span lang="EN-US">We present evidence of compensation between the atmosphere and ocean's meridional energy transport variations, also known as Bjerknes compensation. Motivated by previous studies with mostly numerical climate models, we analyze compensation using a range of atmosphere and ocean reanalysis datasets. We show that Bjerknes compensation is present at almost all latitudes from 40 degrees North to 70 degrees North in the Northern Hemisphere from interannual to decadal time scales. In contrast to results from some numerical climate models, which attribute the compensation to variations of eddy energy transports in the atmosphere in response to changes of ocean heat transport and sea ice at multi-decadal time scales, we find a response of the zonal mean of poleward energy transport to ocean heat transport variability that leads to compensation. This is apparent in a meridional shift of the Ferrel Cell at midlatitudes at decadal time scales in winter. This shift in the cell itself is driven by changes in the eddy momentum flux and related baroclinicity. The oceanic response to atmospheric heat transport variations associated by the shift is primarily wind driven. In summer, there is hardly compensation and the proposed mechanism is not at work. Interestingly, these results are robust among all reanalysis datasets and can provide a benchmark for climate modelling studies.</span></p>

2020 ◽  
Vol 33 (9) ◽  
pp. 3691-3710
Author(s):  
Yang Liu ◽  
Jisk Attema ◽  
Wilco Hazeleger

AbstractInteractions between the atmosphere and ocean play a crucial role in redistributing energy, thereby maintaining the energy balance of the climate system. Here, we examine the compensation between the atmosphere and ocean’s heat transport variations. Motivated by previous studies with mostly numerical climate models, this so-called Bjerknes compensation is studied using reanalysis datasets. We find that atmospheric energy transport (AMET) and oceanic energy transport (OMET) variability generally agree well among the reanalysis datasets. With multiple reanalysis products, we show that Bjerknes compensation is present at almost all latitudes from 40° to 70°N in the Northern Hemisphere from interannual to decadal time scales. The compensation rates peak at different latitudes across different time scales, but they are always located in the subtropical and subpolar regions. Unlike some experiments with numerical climate models, which attribute the compensation to the variation of transient eddy transports in response to the changes of OMET at multidecadal time scales, we find that the response of mean flow to the OMET variability leads to the Bjerknes compensation, and thus the shift of the Ferrel cell at midlatitudes at decadal time scales in winter. This cell itself is driven by the eddy momentum flux. The oceanic response to AMET variations is primarily wind driven. In summer, there is hardly any compensation and the proposed mechanism is not applicable. Given the short historical records, we cannot determine whether the ocean drives the atmospheric variations or the reverse.


2020 ◽  
Vol 33 (5) ◽  
pp. 1643-1658 ◽  
Author(s):  
M. Cameron Rencurrel ◽  
Brian E. J. Rose

AbstractThe Hadley cell (HC) plays a key role in the climate response to variations in ocean heat transport (OHT). Increased OHT is characterized by both a robust slowdown of this overturning circulation, with consequent changes in cloudiness driving the climate response, and a compensating reduction in the atmospheric heat transport (AHT). Here a suite of slab-ocean aquaplanet GCM simulations is used to study the robustness of mechanisms driving changes in HC mass and energy transport across a wide range of idealized spatial patterns of OHT. The HC response is intrinsically related to both the spatial pattern of OHT and the dynamical mechanisms driving the slowdown of the cell. The reduced energy flux of the HC is associated with reductions in both the mass flux and the gross moist stability (GMS) of the cell in all cases. However, when OHT convergence patterns are confined to the subtropics and equatorward thereof (i.e., subtropical overturning cells), the circulation response is largely momentum-conserving in nature when compared to OHT convergence patterns that extend into the midlatitudes, resulting in a deformation of the anomalous streamfunction following angular momentum contours. The effects of this deformation are quantified through a simple, yet novel approach of splitting the streamfunction anomalies into their “speed” and “shape” components. The tilt of the outer branch of the streamfunction anomaly dampens the direct climate effects of the slowdown of the cell while enhancing the change in GMS, effectively decoupling the change in the energy flux from the slowdown.


2017 ◽  
Vol 30 (10) ◽  
pp. 3529-3547 ◽  
Author(s):  
Xiaojuan Liu ◽  
David S. Battisti ◽  
Aaron Donohoe

Abstract Summertime insolation intensified in the Northern Hemisphere during the mid-Holocene, resulting in enhanced monsoonal precipitation. In this study, the authors examine the changes in the annual-mean tropical precipitation as well as changes in atmospheric circulation and upper-ocean circulation in the mid-Holocene compared to the preindustrial climate, as simulated by 12 coupled climate models from PMIP3. In addition to the predominant zonally asymmetric changes in tropical precipitation, there is a small northward shift in the location of intense zonal-mean precipitation (mean ITCZ) in the mid-Holocene in the majority (9 out of 12) of the coupled climate models. In contrast, the shift is southward in simulations using an atmospheric model coupled to a slab ocean. The northward mean ITCZ shift in the coupled simulations is due to enhanced northward ocean heat transport across the equator [OHT(EQ)], which demands a compensating southward atmospheric energy transport across the equator, accomplished by shifting the Hadley cell and hence the mean ITCZ northward. The increased northward OHT(EQ) is primarily accomplished by changes in the upper-ocean gyre circulation in the tropical Pacific acting on the zonally asymmetric climatological temperature distribution. The gyre intensification results from the intensification of the monsoonal winds in the Northern Hemisphere and the weakening of the winds in the Southern Hemisphere, both of which are forced directly by the insolation changes.


2013 ◽  
Vol 9 (4) ◽  
pp. 1495-1504 ◽  
Author(s):  
Z.-S. Zhang ◽  
K. H. Nisancioglu ◽  
M. A. Chandler ◽  
A. M. Haywood ◽  
B. L. Otto-Bliesner ◽  
...  

Abstract. In the Pliocene Model Intercomparison Project (PlioMIP), eight state-of-the-art coupled climate models have simulated the mid-Pliocene warm period (mPWP, 3.264 to 3.025 Ma). Here, we compare the Atlantic Meridional Overturning Circulation (AMOC), northward ocean heat transport and ocean stratification simulated with these models. None of the models participating in PlioMIP simulates a strong mid-Pliocene AMOC as suggested by earlier proxy studies. Rather, there is no consistent increase in AMOC maximum among the PlioMIP models. The only consistent change in AMOC is a shoaling of the overturning cell in the Atlantic, and a reduced influence of North Atlantic Deep Water (NADW) at depth in the basin. Furthermore, the simulated mid-Pliocene Atlantic northward heat transport is similar to the pre-industrial. These simulations demonstrate that the reconstructed high-latitude mid-Pliocene warming can not be explained as a direct response to an intensification of AMOC and concomitant increase in northward ocean heat transport by the Atlantic.


2005 ◽  
Vol 18 (23) ◽  
pp. 4955-4969 ◽  
Author(s):  
Fabio D’Andrea ◽  
Arnaud Czaja ◽  
John Marshall

Abstract Coupled atmosphere–ocean dynamics in the North Atlantic is studied by means of a simple model, featuring a baroclinic three-dimensional atmosphere coupled to a slab ocean. Anomalous oceanic heat transport due to wind-driven circulation is parameterized in terms of a delayed response to the change in wind stress curl due to the North Atlantic Oscillation (NAO). Climate variability for different strengths of ocean heat transport efficiency is analyzed. Two types of behavior are found depending on time scale. At interdecadal and longer time scales, a negative feedback is found that leads to a reduction in the spectral power of the NAO. By greatly increasing the efficiency of ocean heat transport, the NAO in the model can be made to completely vanish from the principal modes of variability at low frequency. This suggests that the observed NAO variability at these time scales must be due to mechanisms other than the interaction with wind-driven circulation. At decadal time scales, a coupled oscillation is found in which SST and geopotential height fields covary.


2013 ◽  
Vol 9 (2) ◽  
pp. 1297-1319 ◽  
Author(s):  
Z.-S. Zhang ◽  
K. H. Nisancioglu ◽  
M. A. Chandler ◽  
A. M. Haywood ◽  
B. L. Otto-Bliesner ◽  
...  

Abstract. In the Pliocene Model Intercomparison Project (PlioMIP), eight state-of-the-art coupled climate models have simulated the mid-Pliocene warm period (mPWP, 3.264 to 3.025 Ma). Here, we compare the Atlantic Meridional Overturning Circulation (AMOC), northward ocean heat transport and ocean stratification simulated with these models. None of the models participating in the PlioMIP simulates a strong mid-Pliocene AMOC as suggested by earlier proxy studies. Rather, there is no consistent increase in AMOC maximum among the PlioMIP models. The only consistent change in AMOC is a shoaling of the overturning cell in the Atlantic, and a reduced influence of North Atlantic Deep Water (NADW) at depth in the basin. Furthermore, the simulated mid-Pliocene Atlantic northward heat transport is similar to the pre-industrial. These simulations demonstrate that the reconstructed high latitude mid-Pliocene warming can not be explained as a direct response to an intensification of AMOC and concomitant increase in northward ocean heat transport by the Atlantic.


2021 ◽  
Author(s):  
Francesca Pearce ◽  
Alejandro Bodas-Salcedo ◽  
Christopher Thomas ◽  
Thomas Allen

<p>The importance of heat transport in the ocean to maintain energy balance between different regions is well known, with heat typically being transported from the Equator to high latitudes. Ocean heat transport (OHT) can be separated into two different components; a divergent component which contributes directly to the Earths’ energy budget as it is the energy that converges in an ocean basin to balance the release of heat into the atmosphere, and a rotational component which does not affect the energy budget. Climate models show significant uncertainty in projections of ocean heat uptake, both in terms of the magnitude and geographical pattern. Since the oceans’ response under climate changes depends on the patterns of surface energy fluxes, it is important to assess the simulation of surface fluxes as a potential constraint of transient and long-term responses of the Earths’ climate. Assuming that the ocean absorbs all of the excess energy within the Earth system, it is possible to directly relate the net surface flux (NSF) over the ocean to divergent OHT, potentially providing a metric to quantify how well climate models are able to reproduce observed patterns of NSF and OHT. In this work, we present a detailed comparison of different methods used to calculate divergent OHT from the NSF over the ocean using data from various CMIP6 models. The methods investigated include a least-squares solution to a matrix equation in which energy convergence is related to NSF via the Earths’ energy imbalance, and solving a Poisson equation over the ocean surface (see Forget and Ferreira 2020). Comparison to observational estimates of OHT requires that the observational data set includes only sources of divergent heat transport, which is often not the case. Therefore, we intend to produce a data set of radiative energy fluxes that are consistent with both energy and water constraints (see Rodell et al. 2015, L’Ecuyer et al. 2015, Thomas et al. 2020) which can be subject to the same methods of determining OHT, and see how these estimates compare to the results from climate models.</p>


2008 ◽  
Vol 21 (3) ◽  
pp. 561-575 ◽  
Author(s):  
Michael Vellinga ◽  
Peili Wu

Abstract The Third Hadley Centre Coupled Ocean–Atmosphere General Circulation Model (HadCM3) is used to analyze the relation between northward energy transports in the ocean and atmosphere at centennial time scales. In a transient water-hosing experiment, where suppressing the Atlantic meridional overturning circulation (MOC) causes a reduction in northward ocean heat transport of up to 0.75 PW (i.e., 75%), the atmosphere compensates by increasing its northward transport of moist static energy. This compensation is very efficient at low latitudes and near complete at the equator throughout the experiment, but is incomplete farther north across the northern midlatitude storm tracks. The change in atmosphere energy transport enables the model to find a new global-mean radiative equilibrium after 240 yr. In a perturbed physics ensemble of HadCM3 it was found that time-averaged meridional energy transports in ocean and atmosphere can act opposingly. Where model formulation causes an unbalanced mean climate state, for example, an excessive top-of-the-atmosphere radiative surplus at low latitudes, the atmosphere increases its poleward energy transport to disperse this excess. MOC and ocean poleward heat transport tend to be reduced in such model versions, and this offsets the increased poleward atmospheric transport of the low-latitude energy surplus. Model versions that are close to net radiative equilibrium also have ocean heat transport and MOC close to observed values.


2011 ◽  
Vol 68 (4) ◽  
pp. 769-783 ◽  
Author(s):  
Xavier J. Levine ◽  
Tapio Schneider

Abstract It is unclear how the width and strength of the Hadley circulation are controlled and how they respond to climate changes. Simulations of global warming scenarios with comprehensive climate models suggest the Hadley circulation may widen and weaken as the climate warms. But these changes are not quantitatively consistent among models, and how they come about is not understood. Here, a wide range of climates is simulated with an idealized moist general circulation model (GCM) coupled to a simple representation of ocean heat transport, in order to place past and possible future changes in the Hadley circulation into a broader context and to investigate the mechanisms responsible for them. By comparison of simulations with and without ocean heat transport, it is shown that it is essential to take low-latitude ocean heat transport and its coupling to wind stress into account to obtain Hadley circulations in a dynamical regime resembling Earth’s, particularly in climates resembling present-day Earth’s and colder. As the optical thickness of an idealized longwave absorber in the simulations is increased and the climate warms, the Hadley circulation strengthens in colder climates and weakens in warmer climates; it has maximum strength in a climate close to present-day Earth’s. In climates resembling present-day Earth’s and colder, the Hadley circulation strength is largely controlled by the divergence of angular momentum fluxes associated with eddies of midlatitude origin; the latter scale with the mean available potential energy in midlatitudes. The importance of these eddy momentum fluxes for the Hadley circulation strength gradually diminishes as the climate warms. The Hadley circulation generally widens as the climate warms, but at a modest rate that depends sensitively on how it is determined.


Sign in / Sign up

Export Citation Format

Share Document