Study on the variation of energetic particle pitch angle caused by NWC VLF transmitter

Author(s):  
Wei Chu ◽  
Song Xu ◽  
ZhenXia Zhang ◽  
Jianping Huang ◽  
Zhima Zeren ◽  
...  

<p>Based on the observation data collected by the Energetic Particles Detector Package(HEPP) on board CSES satellite during the period of 2018 and 2019.We analyzed the characterizes of pitch angle spectrum of energetic electron precipitated caused by NWC. Our analysis revealed in details the transient properties of the space electrons induced by the man-made VLF wave emitted by the transmitter at NWC.The center location of the NWC electron flux locates in the north hemisphere other than in the south hemisphere during both quiet and disturbance period which is surprising.And the central location of NWC electron belt move westwards during the geomagnetic storm.The pitch angle distributions of the precipitation electron have the maximum flux at about 60-70 degree other than at 90 degree.The pitch angle distributions presented here are examined for evidence of the transportation mechanism especially for the electron loss mechanism.</p><p> </p>


2005 ◽  
Vol 23 (5) ◽  
pp. 1555-1563 ◽  
Author(s):  
Y.-M. Tanaka ◽  
M. Ishii ◽  
Y. Murayama ◽  
M. Kubota ◽  
H. Mori ◽  
...  

Abstract. The cosmic noise absorption (CNA) is compared with the precipitating electron flux for 19 events observed in the morning sector, using the high-resolution data obtained during the conjugate observations with the imaging riometer at Poker Flat Research Range (PFRR; 65.11° N, 147.42° W), Alaska, and the low-altitude satellite, NOAA 12. We estimate the CNA, using the precipitating electron flux measured by NOAA 12, based on a theoretical model assuming an isotropic pitch angle distribution, and quantitatively compare them with the observed CNA. Focusing on the eight events with a range of variation larger than 0.4dB, three events show high correlation between the observed and estimated CNA (correlation coefficient (r0)>0.7) and five events show low correlation (r0<0.5). The estimated CNA is often smaller than the observed CNA (72% of all data for 19 events), which appears to be the main reason for the low-correlation events. We examine the assumption of isotropic pitch angle distribution by using the trapped electron flux measured at 80° zenith angle. It is shown that the CNA estimated from the trapped electron flux, assuming an isotropic pitch angle distribution, is highly correlated with the observed CNA and is often overestimated (87% of all data). The underestimate (overestimate) of CNA derived from the precipitating (trapped) electron flux can be interpreted in terms of the anisotropic pitch angle distribution similar to the loss cone distribution. These results indicate that the CNA observed with the riometer may be quantitatively explained with a model based on energetic electron precipitation, provided that the pitch angle distribution and the loss cone angle of the electrons are taken into account. Keywords. Energetic particles, precipitating – Energetic particles, trapped – Ionosphere-magnetosphere interactions



2007 ◽  
Vol 25 (12) ◽  
pp. 2633-2640 ◽  
Author(s):  
B. M. Walsh ◽  
T. A. Fritz ◽  
N. M. Lender ◽  
J. Chen ◽  
K. E. Whitaker

Abstract. Observations by the ISEE-1 and ISEE-2 spacecraft on 29 September 1978 show large CEP (Cusp Energetic Particle) fluxes while passing through the dayside magnetospheric cusp in near coincident orbits. The event was observed around 11:00 MLT between roughly 12:30 and 13:00 UT by ISEE-1 and 12:00 and 13:00 UT by ISEE-2. During these periods, both electron and ion fluxes increased by more than two orders of magnitude, with the electron flux showing a strong peak at a pitch angle of 90°. The solar wind was ~710 km s−1 and the Dst was ~−200 nT, suggesting the occurrence of a strong geomagnetic storm. The ISEE-1 and ISEE-2 observations, however, show no time-energy dispersion of the CEPs, leading us to believe that these particles could not be the result of substorm processes in the magnetotail. The local magnetic field was depressed and extremely turbulent. Changes in the magnitude of the magnetic field anticorrelate closely to variations of the electron flux. The observations in electron flux peaking at 90° and the close anticorrelation between the local magnetic field strength and electron flux are unique and provide evidence of a potential local source for these energetic particles.



1980 ◽  
Vol 86 ◽  
pp. 311-313
Author(s):  
R. P. Lin ◽  
D. W. Potter ◽  
K. A. Anderson ◽  
J. Fainberg ◽  
R. G. Stone ◽  
...  

We present simultaneous energetic electron and solar radio observations from the ISEE−3 spacecraft of several solar type III radio bursts. The UC Berkeley energetic particle experiment measures from 2 to ~ 103 keV with good energy and pitch angle resolution while the Meudon/GSFC radio experiment tracks type III radio bursts at 24 frequencies in the range 30 kHz—2 MHz.



2021 ◽  
Vol 87 (4) ◽  
Author(s):  
I. Chavdarovski ◽  
M. Schneller ◽  
A. Biancalani

We derive the local dispersion relation of energetic-particle-induced geodesic acoustic modes (EGAMs) for both trapped and circulating ion beams with single pitch angle slowing-down and Maxwellian distributions, as well as a bump-on-tail distribution in tokamak plasmas. For slowing-down and Maxwellian particles, the solutions of the local dispersion relation give the spectrum, growth rate and thresholds of excitation as functions of the pitch angle, beam density and frequency of the energetic particles bounce motion. For circulating ions there is only one unstable branch with frequency below the GAM continuum and a threshold of excitation in the pitch angle, for both the slowing-down and single pitch Maxwellian distributions. Trapped particles cause no excitation of a mode for neither slowing-down nor Maxwellian ion beams, but they can excite a mode with a bump-on-tail distribution when the mean velocity of the beam is larger than the threshold and the energetic particle bounce frequency is high enough.



1999 ◽  
Vol 17 (12) ◽  
pp. 1622-1625 ◽  
Author(s):  
M. Cyamukungu ◽  
C. Lippens ◽  
L. Adams ◽  
R. Nickson ◽  
C. Boeder ◽  
...  

Abstract. On the basis of the currents induced by electron fluxes in the Scintillating Fibre Detector (SFD) onboard the EQUATOR-S satellite launched on 2 December 1997, an in-situ acceleration of radiation belt electrons is found to possibly contribute to the increase of the flux of electrons with energies greater than 400 keV. The data acquired between 16 December 1997 and 30 April 1998 on the 500–67300 km, 4° inclination EQUATOR-S orbit show that the increase of the energetic electron flux corresponds to the enhanced geomagnetic activity measured through the Dst index.Key words. Magnetospheric physics (energetic particles · trapped; storms and substorms; instruments and techniques)



2002 ◽  
Vol 20 (4) ◽  
pp. 445-460 ◽  
Author(s):  
A. A. Eccles ◽  
T. A. Fritz

Abstract. The pitch-angle distributions (PAD) of energetic particles are examined as the ISEE-1 satellite crosses the Earth’s magnetopause near the subsolar point. The investigation focuses on the possible existence of a particular type of distribution that would be associated with a source of energetic particles in the high-latitude magnetosphere. PADs, demonstrating broad, persistent field-aligned fluxes filling a single hemisphere (upper/northern or lower/southern), were observed just sunward of the magnetopause current layer for an extended period of many minutes. These distributions are a direct prediction of a possible source of energetic particles located in the high altitude dayside cusp and we present five examples in detail of the three-dimensional particle distributions to demonstrate their existence. From these results, other possible causes of such PADs are examined.Key words. Magnetospheric physics (energetic particles, precipitating; magnetopause, cusp and boundary layers; magnetospheric configuration and dynamics)



2021 ◽  
Vol 28 (8) ◽  
pp. 080701
Author(s):  
M. Idouakass ◽  
Y. Todo ◽  
H. Wang ◽  
J. Wang ◽  
R. Seki ◽  
...  


2018 ◽  
Vol 45 (7) ◽  
pp. 2911-2917 ◽  
Author(s):  
J. F. Carbary ◽  
D. G. Mitchell ◽  
P. Kollmann ◽  
N. Krupp ◽  
E. Roussos ◽  
...  


1998 ◽  
Vol 16 (1) ◽  
pp. 25-33 ◽  
Author(s):  
E. E. Titova ◽  
T. A. Yahnina ◽  
A. G. Yahnin ◽  
B. B. Gvozdevsky ◽  
A. A. Lyubchich ◽  
...  

Abstract. Specific type of energetic electron precipitation accompanied by a sharp increase in trapped energetic electron flux are found in the data obtained from low-altitude NOAA satellites. These strongly localized variations of the trapped and precipitated energetic electron flux have been observed in the evening sector near the plasmapause during recovery phase of magnetic storms. Statistical characteristics of these structures as well as the results of comparison with proton precipitation are described. We demonstrate the spatial coincidence of localized electron precipitation with cold plasma gradient and whistler wave intensification measured on board the DE-1 and Aureol-3 satellites. A simultaneous localized sharp increase in both trapped and precipitating electron flux could be a result of significant pitch-angle isotropization of drifting electrons due to their interaction via cyclotron instability with the region of sharp increase in background plasma density.Key words. Ionosphere (particle precipitation; wave-particle interaction) Magnetospheric Physics (plasmasphere)



Sign in / Sign up

Export Citation Format

Share Document