Towards Smart Water Cities – opportunities arising from Smart Rain Barrels for urban drainage and water supply

Author(s):  
Martin Oberascher ◽  
Carolina Kinzel ◽  
Martin Schöpf ◽  
Ulrich Kastlunger ◽  
Christoph Zingerle ◽  
...  

<p>In this work, the concept of the smart rain barrel (SRB) as an IoT solution for green infrastructure is presented. The SRB are real-time controlled micro-storages (200 litre) used for an advanced rainwater management. System states and high-resolution weather forecasts from the meteorological service are integrated into the control strategy to provide adequate rainwater for irrigation requirements and to reduce peak runoff in the drainage system. The integration into the smart water infrastructure and the exchange of control commands is done via LoRaWAN, a low-power radio network. For ease of development and to demonstrate the effectiveness of the SRB concept, a two-stage approach was chosen.</p><p>First, a prototype of the SRB was built, which is in operation at the university campus of Innsbruck (Austria) during the summer months since 2019. The campus area, also denoted Smart Campus, is part of a pilot project for a “Smart Water City”. This campus is used as both, demonstration object and experimental framework for smart applications in urban water management. The Smart Campus integrates water supply and urban drainage into a joint controlled system, in which natural and anthropogenic water inflows and outflows are measured in real-time. Current measurements encompass water consumptions and pressures in the distribution system, meteorological data at different locations, filling levels in the drainage system, as well as filling levels and soil moistures of decentralised stormwater retention and infiltration systems. The temporal resolution of the measurements is depending on the application between 1 and 15 minutes. By using these high-resolution measurement data, the Smart Campus is an ideal testing ground for smart applications such as the SRB.</p><p>In addition, numerical simulations were carried out to test different control strategies and to investigate the effects of a large-scale implementation of the SRBs at community level. The results show that the SRBs can significantly improve system performance (e.g. reduce potable drinking water demand and reduce the risk of flooding) despite their small storage volumes. But the results also demonstrate, that if a large number of SRBs are implemented, a coordinated control strategy to operate SRBs and urban water infrastructure is necessary to avoid a worsening of the system (e.g. generate a combined sewer overflow by simultaneous emptying the SRBs during dry weather flow).</p>

1997 ◽  
Vol 36 (8-9) ◽  
pp. 19-24 ◽  
Author(s):  
Richard Norreys ◽  
Ian Cluckie

Conventional UDS models are mechanistic which though appropriate for design purposes are less well suited to real-time control because they are slow running, difficult to calibrate, difficult to re-calibrate in real time and have trouble handling noisy data. At Salford University a novel hybrid of dynamic and empirical modelling has been developed, to combine the speed of the empirical model with the ability to simulate complex and non-linear systems of the mechanistic/dynamic models. This paper details the ‘knowledge acquisition module’ software and how it has been applied to construct a model of a large urban drainage system. The paper goes on to detail how the model has been linked with real-time radar data inputs from the MARS c-band radar.


2018 ◽  
Vol 15 (4) ◽  
pp. 362-370 ◽  
Author(s):  
Stefan Kroll ◽  
Alessio Fenu ◽  
Tom Wambecq ◽  
Marjoleine Weemaes ◽  
Jan Van Impe ◽  
...  

2011 ◽  
Vol 64 (7) ◽  
pp. 1519-1526 ◽  
Author(s):  
A. S. Beenen ◽  
J. G. Langeveld ◽  
H. J. Liefting ◽  
R. H. Aalderink ◽  
H. Velthorst

This paper introduces an integrated approach for the assessment of receiving water quality and the relative contribution of the urban drainage system to perceived receiving water quality problems. The approach combines mass balances with relatively simple receiving water impact models. The research project has learned that the urban drainage system is only one of the determining factors with respect to receiving urban water quality problems. The morphology of the receiving waters and the non-sewer sources of pollution, such as waterbirds, dogs, or inflow of external surface water might be equally important. This conclusion underlines the necessity to changes today's emission based approach and adopt an integral and immission based approach. The integrated approach is illustrated on a case study in Arnhem, where the receiving water quality remained unsatisfactory even after retrofitting a combined sewer system into a separated sewer system.


2014 ◽  
Vol 70 (11) ◽  
pp. 1817-1824 ◽  
Author(s):  
R. Sitzenfrei ◽  
W. Rauch

The impact of climate change, water scarcity, land use change, population growth and also population shrinking can only be predicted with uncertainties. Especially for assets with a long planning horizon this is a critical part for planning and design. One solution is to make centralized organized water infrastructure with a long-planning horizon resilient and adaptive. For existing centralized infrastructure such a transition would be to increasingly implement decentralized measures. But such a transition can cause severe impacts on existing centralized infrastructure. Low flow conditions in urban drainage systems can cause sediment deposition, and for water supply systems water age problems may occur. This work focuses on city-scale analysis for assessing the impact of such measures. For that a coupled model for integrated city-scale analysis is applied and further developed. In addition, a geographic information system (GIS)-based approach for sensitivity analysis is enhanced and also implemented in that model. The developed approach is applied to assess the water infrastructure of an alpine case study. With the obtained results it is demonstrated how the planning process is enhanced by indicating where and where not to implement decentralized measures in an existing water infrastructure.


2010 ◽  
Vol 62 (9) ◽  
pp. 2106-2114 ◽  
Author(s):  
J. P. Leitão ◽  
N. E. Simões ◽  
Č. Maksimović ◽  
F. Ferreira ◽  
D. Prodanović ◽  
...  

Lead time between rainfall prediction results and flood prediction results obtained by hydraulic simulations is one of the crucial factors in the implementation of real-time flood forecasting systems. Therefore, hydraulic simulation times must be as short as possible, with sufficient spatial and temporal flood distribution modelling accuracy. One of the ways to reduce the time required to run hydraulic model simulations is increasing computational speed by simplifying the model networks. This simplification can be conducted by removing and changing some secondary elements using network simplification techniques. The emphasis of this paper is to assess how the level of urban drainage network simplification influences the computational time and overall simulation results' accuracy. The models used in this paper comprise a sewer network and an overland flow drainage system in both 1D/1D and 1D/2D approaches. The 1D/1D model is used as the reference model to generate several models with different levels of simplifications. The results presented in this paper suggest that the 1D/2D models are not yet suitable to be used in real-time flood prediction applications due to long simulation time, while on the other hand, the simplified 1D/1D models show that considerable reductions in simulation time can be achieved without compromising simulation results (flow and water depth) accuracy.


2015 ◽  
Author(s):  
S. Spina ◽  
L. Pancotto ◽  
G. Paris ◽  
F. Lombardo ◽  
S. Magnaldi ◽  
...  

2021 ◽  
Vol 13 (9) ◽  
pp. 5325
Author(s):  
Kang-Min Koo ◽  
Kuk-Heon Han ◽  
Kyung-Soo Jun ◽  
Gyumin Lee ◽  
Kyung-Taek Yum

In South Korea, in line with the increasing need for a reliable water supply following the continuous increase in water demand, the Smart Water Grid Research Group (SWGRG) was officially launched in 2012. With the vision of providing water welfare at a national level, SWGRG incorporated Information and Communications Technology in its water resource management, and built a living lab for the demonstrative operation of the Smart Water Grid (SWG). The living lab was built in Block 112 of YeongJong Island, Incheon, South Korea (area of 17.4 km2, population of 8000), where Incheon International Airport, a hub for Northeast Asia, is located. In this location, water is supplied through a single submarine pipeline, making the location optimal for responses to water crises and the construction of a water supply system during emergencies. From 2017 to 2019, ultrasonic wave type smart water meters and IEEE 802.15.4 Advanced Metering Infrastructure (AMI) networks were installed at 527 sites of 958 consumer areas in the living lab. Therefore, this study introduces the development of SWG core element technologies (Intelligent water source management and distribution system, Smart water distribution network planning/control/operation strategy establishment, AMI network and device development, Integrated management of bi-directional smart water information), and operation solutions (Smart water statistics information, Real-time demand-supply analysis, Decision support system, Real-time hydraulic pipeline network analysis, Smart DB management, and Water information mobile application) through a field operation and testing in the living lab.


Sign in / Sign up

Export Citation Format

Share Document