On the droplet spectral broadening numerics

Author(s):  
Michael Olesik ◽  
Piotr Bartman ◽  
Sylwester Arabas ◽  
Gustavo Abade ◽  
Manuel Baumgartner ◽  
...  

<p>Owing to its key role in determining both the droplet collision probabilities and the radiative-transfer-relevant spectrum characteristics, the evolution of droplet spectral width has long been the focus of cloud modelling studies. Cloud simulations with detailed treatment of droplet microphysics face a twofold challenge in prognosing the droplet spectrum width. First, it is challenging to model and numerically represent the subtleties of condensational growth, even more so when considering the interplay between particle population dynamics and supersaturation fluctuations. Second, the discretisation strategies employed in representing the particle size spectrum and its evolution are characterised by inherent limitations. </p><p>In the poster, we will present results of both Eulerian and Lagrangian numerical representations of spectrum width evolution. In the case of Lagrangian approach, we will discuss the differences in numerical integration procedures between (a) the sophisticated solvers typically used in parcel-model frameworks with moving-sectional spectrum representation and (b) the simpler solvers typically used in mathematically-analogous particle-based (super-droplet) microphysics representations used in multi-dimensional models.</p><p>In the case of Eulerian (bin microphysics) approach, we will present condensational growth simulations performed with the MPDATA numerical scheme using the newly developed MPyDATA package (http://github.com/atmos-cloud-sim-uj/MPyDATA/). The MPDATA family of numerical schemes for solving advective transport problems has been in continuous development for almost four decades. MPDATA features a variety of options allowing to pick an algorithm variant appropriate to the problem at hand. We will focus on the importance the MPDATA algorithm variant choice and the grid setup for the resultant numerical diffusion.</p><p>In the case of Lagrangian approach, we will present simulations performed using the newly developed PySDM package (https://github.com/atmos-cloud-sim-uj/PySDM) that features a set of cloud microphysics algorithms including condensational growth solvers. In the discussion, we will focus on: (a) the numerical realisability of the Ostwald ripening process (i.e. the growth of larger particles at the expense of water content of the smaller ones) and (b) the numerical approaches available for integrating stochastic fluctuations of ambient thermodynamic properties that drive the water vapour saturation.</p>

2019 ◽  
Vol 77 (3) ◽  
pp. 1151-1165 ◽  
Author(s):  
Wojciech W. Grabowski

Abstract This paper presents a comparison of simulations applying either a traditional Eulerian bin microphysics or a novel particle-based Lagrangian approach to represent CCN activation and cloud droplet growth. The Eulerian microphysics solve the evolution equation for the spectral density function, whereas the Lagrangian approach follows computational particles referred to as superdroplets. Each superdroplet represents a multiplicity of natural droplets that makes the Lagrangian approach computationally feasible. The two schemes apply identical representation of CCN activation and use the same droplet growth equation; these make direct comparison between the two schemes practical. The comparison, the first of its kind, applies an idealized simulation setup motivated by laboratory experiments with the Pi Chamber and previous model simulations of the Pi Chamber dynamics and microphysics. The Pi Chamber laboratory apparatus considers interactions between turbulence, CCN activation, and cloud droplet growth in moist Rayleigh–Bénard convection. Simulated steady-state droplet spectra averaged over the entire chamber are similar, with the mean droplet concentration, mean radius, and spectral width close in Eulerian and Lagrangian simulations. Small differences that do exist are explained by the inherent differences between the two schemes and their numerical implementation. The local droplet spectra differ substantially, again in agreement with the inherent limitations of the theoretical foundation behind each approach. There is a general agreement between simulations and Pi Chamber observations, with simplifications of the CCN activation and droplet growth equation used in the simulations likely explaining specific differences.


2020 ◽  
Author(s):  
Wojciech W. Grabowski

<p>This paper discusses a comparison of simulations applying either a traditional Eulerian bin microphysics or a novel particle-based Lagrangian approach to represent CCN activation and cloud droplet growth. The Eulerian microphysics solve the evolution equation for the spectral density function, whereas the Lagrangian approach follows computational particles referred to as super-droplets. Each super-droplet represents a multiplicity of natural droplets that makes the Lagrangian approach computationally feasible. The two schemes apply identical representation of CCN activation and use the same droplet growth equation; these make direct comparison between the two schemes practical. The comparison, the first of its kind, applies an idealized simulation setup motivated by laboratory experiments with the Pi Chamber and previous model simulations of the Pi Chamber dynamics and microphysics. The Pi Chamber laboratory apparatus considers interactions between turbulence, CCN activation, and cloud droplet growth in moist Rayleigh-Bénard convection. Simulated steady-state droplet spectra averaged over the entire chamber are similar, with the mean droplet concentration, mean radius, and spectral width close in Eulerian and Lagrangian simulations. Small differences that do exist are explained by the inherent differences between the two schemes and their numerical implementation. The local droplet spectra differ substantially, again in agreement with the inherent limitations of the theoretical foundation behind each approach. There is a general agreement between simulations and Pi Chamber observations, with simplifications of the CCN activation and droplet growth equation used in the simulations likely explaining specific differences.</p>


2018 ◽  
Vol 75 (10) ◽  
pp. 3365-3379 ◽  
Author(s):  
Gustavo C. Abade ◽  
Wojciech W. Grabowski ◽  
Hanna Pawlowska

This paper discusses the effects of cloud turbulence, turbulent entrainment, and entrained cloud condensation nuclei (CCN) activation on the evolution of the cloud droplet size spectrum. We simulate an ensemble of idealized turbulent cloud parcels that are subject to entrainment events modeled as a random process. Entrainment events, subsequent turbulent mixing inside the parcel, supersaturation fluctuations, and the resulting stochastic droplet activation and growth by condensation are simulated using a Monte Carlo scheme. Quantities characterizing the turbulence intensity, entrainment rate, CCN concentration, and the mean fraction of environmental air entrained in an event are all specified as independent external parameters. Cloud microphysics is described by applying Lagrangian particles, the so-called superdroplets. These are either unactivated CCN or cloud droplets that grow from activated CCN. The model accounts for the addition of environmental CCN into the cloud by entraining eddies at the cloud edge. Turbulent mixing of the entrained dry air with cloudy air is described using the classical linear relaxation to the mean model. We show that turbulence plays an important role in aiding entrained CCN to activate, and thus broadening the droplet size distribution. These findings are consistent with previous large-eddy simulations (LESs) that consider the impact of variable droplet growth histories on the droplet size spectra in small cumuli. The scheme developed in this work is ready to be used as a stochastic subgrid-scale scheme in LESs of natural clouds.


2018 ◽  
Vol 75 (11) ◽  
pp. 4005-4030 ◽  
Author(s):  
Hugh Morrison ◽  
Mikael Witte ◽  
George H. Bryan ◽  
Jerry Y. Harrington ◽  
Zachary J. Lebo

Abstract This study investigates droplet size distribution (DSD) characteristics from condensational growth and transport in Eulerian dynamical models with bin microphysics. A hierarchy of modeling frameworks is utilized, including parcel, one-dimensional (1D), and three-dimensional large-eddy simulation (LES). The bin DSDs from the 1D model, which includes only vertical advection and condensational growth, are nearly as broad as those from the LES and in line with observed DSD widths for stratocumulus clouds. These DSDs are much broader than those from Lagrangian microphysical calculations within a parcel framework that serve as a numerical benchmark for the 1D tests. In contrast, the bin-modeled DSDs are similar to the Lagrangian microphysical benchmark for a rising parcel in which Eulerian transport is not considered. These results indicate that numerical diffusion associated with vertical advection is a key contributor to broadening DSDs in the 1D model and LES. This DSD broadening from vertical numerical diffusion is unphysical, in contrast to the physical mixing processes that previous studies have indicated broaden DSDs in real clouds. It is proposed that artificial DSD broadening from vertical numerical diffusion compensates for underrepresented horizontal variability and mixing of different droplet populations in typical LES configurations with bin microphysics, or the neglect of other mechanisms that broaden DSDs such as growth of giant cloud condensation nuclei. These results call into question the ability of Eulerian dynamical models with bin microphysics to investigate the physical mechanisms for DSD broadening, even though they may reasonably simulate overall DSD characteristics.


2020 ◽  
Author(s):  
Wojciech W. Grabowski ◽  
Lois Thomas

Abstract. Increase of the spectral width of initially monodisperse population of cloud droplets in homogeneous isotropic turbulence is investigated applying a finite-difference fluid flow model combined with either Eulerian bin microphysics or Lagrangian particle-based scheme. The turbulence is forced applying a variant of the so-called linear forcing method that maintains the mean turbulent kinetic energy (TKE) and the TKE partitioning between velocity components. The latter is important for maintaining the quasi-steady forcing of the supersaturation fluctuations that drive the increase of the spectral width. We apply a large computational domain, 643 m3, one of the domains considered in Thomas et al. (2020). The simulations apply 1 m grid length and are in the spirit of the implicit large eddy simulation (ILES), that is, with explicit small-scale dissipation provided by the model numerics. This is in contrast to the scaled-up direct numerical simulation (DNS) applied in Thomas et al. (2020). Two TKE intensities and three different droplet concentrations are considered. Analytic solutions derived in Sardina et al. (2015), valid for the case when the turbulence time scale is much larger than the droplet phase relaxation time scale, are used to guide the comparison between the two microphysics simulation techniques. The Lagrangian approach reproduces the scalings relatively well. Representing the spectral width increase in time is more challenging for the bin microphysics because appropriately high resolution in the bin space is needed. The bin width of 0.5 μm is only sufficient for the lowest droplet concentration, 26 cm−3. For the highest droplet concentration, 650 cm−3, even an order of magnitude smaller bin size is not sufficient. The scalings are not expected to be valid for the lowest droplet concentration and the high TKE case, and the two microphysics schemes represent similar departures. Finally, because the fluid flow is the same for all simulations featuring either low or high TKE, one can compare point-by-point simulation results. Such a comparison shows very close temperature and water vapor point-by-point values across the computational domain, and larger differences between simulated mean droplet radii and spectral width. The latter are explained by fundamental differences in the two simulation methodologies, numerical diffusion in the Eulerian bin approach and relatively small number of Lagrangian particles that are used in the particle-based microphysics.


2017 ◽  
Vol 74 (10) ◽  
pp. 3145-3166 ◽  
Author(s):  
K. Gayatri ◽  
S. Patade ◽  
T. V. Prabha

Abstract The Weather Research and Forecasting (WRF) Model coupled with a spectral bin microphysics (SBM) scheme is used to investigate aerosol effects on cloud microphysics and precipitation over the Indian peninsular region. The main emphasis of the study is in comparing simulated cloud microphysical structure with in situ aircraft observations from the Cloud Aerosol Interaction and Precipitation Enhancement Experiment (CAIPEEX). Aerosol–cloud interaction over the rain-shadow region is investigated with observed and simulated size distribution spectra of cloud droplets and ice particles in monsoon clouds. It is shown that size distributions as well as other microphysical characteristics obtained from simulations such as liquid water content, cloud droplet effective radius, cloud droplet number concentration, and thermodynamic parameters are in good agreement with the observations. It is seen that in clouds with high cloud condensation nuclei (CCN) concentrations, snow and graupel size distribution spectra were broader compared to clouds with low concentrations of CCN, mainly because of enhanced riming in the presence of a large number of droplets with a diameter of 10–30 μm. The Hallett–Mossop ice multiplication process is illustrated to have an impact on snow and graupel mass. The changes in CCN concentrations have a strong effect on cloud properties over the domain, amounts of cloud water, and the glaciation of the clouds, but the effects on surface precipitation are small when averaged over a large area. Overall enhancement of cold-phase cloud processes in the high-CCN case contributed to slight enhancement (5%) in domain-averaged surface precipitation.


2020 ◽  
Vol 77 (10) ◽  
pp. 3361-3385 ◽  
Author(s):  
Edward R. Mansell ◽  
Daniel T. Dawson II ◽  
Jerry M. Straka

AbstractA three-moment bulk microphysics scheme is modified to treat melting in a size-dependent manner that emulates results from a spectral bin scheme. The three-moment bulk framework allows the distribution shape to change and accommodate some direct effects of melting on both the hail and raindrop size distributions. Reflectivity changes and shed raindrop sizes are calculated over discrete size ranges of the hail particle spectrum. Smaller ice particles are treated as melting into drops of the same mass, whereas large particles shed drops as they melt. As small ice particles are lost, the size spectrum naturally becomes narrower and the mean size of small hail can increase. Large hail with a narrow spectrum, however, can decrease in size from melting. A substantial effect is seen on the rain median volume diameter when small drops are shed from large melting hail. The NSSL bulk scheme is compared with bin microphysics in steady-state hail shafts and in a supercell storm case. It is also shown that melting (or any substantial removal of mass) induces gravitational size sorting in bulk microphysics to increase hail size despite the design of the process rates to maintain the mean size of the melting ice. This unintended side effect can be a correct behavior for small hail, but not for large hail with a narrow distribution, when mean hail size should decrease by melting.


2010 ◽  
Vol 3 (3) ◽  
pp. 1271-1315
Author(s):  
S. Arabas ◽  
H. Pawlowska

Abstract. The process of formation of cloud droplets on an ensemble of aerosol particles is modelled by numerous investigators using the method of lines (MOL). The method involves discretization of the aerosol size spectrum into bins whose position and width evolve with time. One of the drawbacks of the method is its poor representation of the aerosol spectrum shape in the region between the unactivated aerosol mode and the activated cloud-droplet mode. An adaptive spectrum refinement procedure that improves the performance of the method is introduced and tested. A model of drop formation on multi-component aerosol is formulated for the purpose of the study. Model formulation includes explicit treatment of the drop temperature evolution. Several examples of the model set-up are used to demonstrate model capabilities. Model results are compared to those without adaptivity, and are compared to the Twomey's formul\\ae. A C++ implementation of the model is available as an electronic supplement of the paper.


2018 ◽  
Author(s):  
Lianet Hernández Pardo ◽  
Luiz Augusto Toledo Machado ◽  
Micael Amore Cecchini ◽  
Madeleine Sánchez Gácita

Abstract. This work uses the number concentration-effective diameter phase-space to test cloud sensitivity to variations in the aerosol population characteristics, such as the aerosol size distribution, number concentration and hygroscopicity. It is based on the information from the top of a cloud simulated by a bin-microphysics single-column model, for initial conditions typical of the Amazon. It is shown that the cloud-top evolution can be very sensitive to aerosol properties, but the relative importance of each parameter is variable. The sensitivity to each aerosol characteristic varies as a function of the tested parameter and is conditioned by the base values of the other parameters. The median radius of the aerosols showed the largest influence on this sensitivity. We show that all aerosol properties can have significant impacts on cloud microphysics, especially if the median radius of the aerosol size distribution is smaller than 0.05 μm.


Atmosphere ◽  
2018 ◽  
Vol 9 (12) ◽  
pp. 475 ◽  
Author(s):  
Hyunho Lee ◽  
Jong-Jin Baik

Comparisons between bin and bulk cloud microphysics schemes are conducted by simulating a heavy precipitation case using a bin microphysics scheme and four double-moment bulk microphysics schemes in the Weather Research and Forecasting (WRF) model. For this, we implemented an updated bin microphysics scheme in the WRF model. All of the microphysics schemes underestimate observed strong precipitation, but the bin microphysics scheme yields the result that is closest to observations. The differences among the schemes are more pronounced in terms of hydrometeor number concentration than in terms of hydrometeor mixing ratio. In this case, the bin scheme exhibits remarkably more latent heat release by deposition and riming than the bulk schemes. This causes stronger updrafts and more upward transport of water vapor, which leads to more deposition, and again, increases the latent heat release. An additional simulation using the bin scheme but excluding the riming of cloud droplets on ice crystals, which is not or poorly treated in the examined bulk schemes, shows that surface precipitation is slightly weakened and moved farther downwind compared to that of the control simulation. This implies that the more appropriate representation of microphysical processes in the bin microphysics scheme contributes to the more accurate prediction of precipitation in this case.


Sign in / Sign up

Export Citation Format

Share Document