Capability of maize water use efficiency estimation at field scale using Sentinel-2 data

Author(s):  
Zonghan Ma ◽  
Bingfang Wu ◽  
Nana Yan ◽  
Weiwei Zhu

<p>Water use efficiency (WUE) is defined as the ratio between gross primary production (GPP) and evapotranspiration (ET) at ecosystem scale, which can help understand the mechanism between water consumption and crop production in guiding field water management. Water consumption control is important in precision agriculture development. Mapping WUE at field scale using remote sensing data could provide crop water use status at high resolution and acquire the WUE spatial distribution. In this study we proposed a method to estimate field-scale maize WUE with Sentienl-2 data. The GPP of maize is estimated by a light use efficiency model with RS observed albedo, sunshine radiation, fraction of photosynthetically active radiation (fpar) fitted using in site observation. Maize ET is modelled using FAO-PM model with crop coefficient simulated using vegetation indexes acquired from Sentinel-2 bands. We compared the GPP, ET and final WUE estimation with eddy covariance (EC) observations in a maize field of North China Plain where water scarcity is a main limit factor of crop development. Comparation results show a high correlation between in site observation and modelled results. Combining the phenology development of maize, the temporal characteristics of maize WUE change is associated with phenology. WUE was low after sowing, then increased during Elongation stage. Maize WUE peaked at Heading and Grouting period and decreased in Maturation stage. Our WUE estimation method with high resolution could guide adopting various irrigation strategies based on different WUE conditions at field scale. This research could help shed light on the future WUE development under climate change background and improve our knowledge of precise water management.</p>

Irriga ◽  
2018 ◽  
Vol 21 (2) ◽  
pp. 352
Author(s):  
HIPÓLITO MURGA-ORRILLO ◽  
WELLINGTON FARIAS ARAUJO ◽  
CARLOS ABANTO RODRIGUEZ ◽  
RICARDO MANUEL BARDALES LOZANO ◽  
ROBERTO TADASHI SAKAZAKI ◽  
...  

INFLUÊNCIA DA COBERTURA MORTA NA EVAPOTRANSPIRAÇÃO, COEFICIENTE DE CULTIVO E EFICIÊNCIA DE USO DE ÁGUA DO MILHO CULTIVADO EM CERRADO HIPÓLITO MURGA-ORRILLO1; WELLINGTON FARIAS ARAÚJO2; CARLOS ABANTO-RODRIGUEZ3; ROBERTO TADASHI SAKAZAKI4; RICARDO MANUEL BARDALES-LOZANO5 E ANA ROSA POLO-VARGAS6 1Engenheiro Agrônomo, Prof. Auxiliar, Universidad Nacional Autónoma de Chota, (UNACH), Jr. Gregorio Malca Nº 875- Campus Colpa Matara, Chota, Perú. [email protected] Agrônomo, Prof. Dr. Associado da UFRR/CCA, Boa Vista, RR. [email protected] Florestal, Investigador no Instituto de Investigaciones de la Amazonía Peruana, Carretera Federico Basadre, Km 12,400, Yarinacocha, Ucayali, Perú. [email protected] Agrônomo, Doutorando na UFRR/CCA, Boa Vista, RR. [email protected] Agrônomo, Doutorando na UFRR/Bionorte, Boa Vista, RR. [email protected] Agrônoma, Graduada na Universidad Nacional de Cajamarca, (UNC), Av. Atahualpa Nº 1050- Carretera Cajamarca-Baños del Inca, Cajamarca, Perú. [email protected]  1 RESUMOA irrigação consome grande quantidade de água, sendo importante um adequado manejo da cultura para minimizar esse consumo, maximizando a produção. No intuito de obter informações para o manejo da irrigação, objetivou-se com o presente trabalho determinar a evapotranspiração da cultura (ETc), o coeficiente de cultivo (Kc) e a eficiência do uso de água (EUAg) da cultura de milho, em solo com e sem cobertura, durante os diferentes estádios de desenvolvimento, utilizando lisímetros de drenagem. O experimento foi conduzido no campus Cauamé da Universidade Federal de Roraima, entre 19/04/2014 e 07/08/2014, em Boa Vista, RR. A evapotranspiração de referência (ETo) foi estimada pelo método de Penman-Monteith FAO. Os resultados da ETc do milho, durante o ciclo da cultura, em solo sem e com cobertura foram de 421,5 e 351,0 mm, respectivamente. As médias diárias de ETc foram de 4,1 mm dia-1 para solo sem cobertura e 3,4 mm dia-1 para solo com cobertura. A cobertura do solo propiciou valores diferentes de Kc's para o milho, nos mesmos estádios, em comparação aos Kc’s do solo descoberto. Para o solo descoberto, os Kc’s observados para os estádios fenológicos I, II, III, e IV, foram de 0,40; 0,84; 1,59 e 0,81, respectivamente. Já para solo com cobertura, os Kc’s pelos mesmos estádios em menção foram 0,28; 0,64; 1,49 e 0,48, respectivamente. A EUAg para solo com cobertura foi 1,77 kg m-3 e para solo sem cobertura foi 1,65 kg m-3. Estes resultados mostram que a cobertura morta no solo influenciou no consumo hídrico do milho durante todo seu ciclo. Palavras-chave: Zea mays. Irrigação. Solo coberto. Consumo hídrico.  MURGA-ORRILLO, H.; ARAÚJO, W. F.; ABANTO-RODRIGUEZ C.; SAKAZAKI, R. T.; BARDALES-LOZANO R. M.; POLO-VARGAS, A. R.MULCH INFLUENCE ON EVAPOTRANSPIRATION, CROP COEFFICIENT AND WATER USE EFFICIENCY OF CORN GROWN IN THE SAVANNAH   2 ABSTRACTIrrigation consumes large amounts of water, and minimizing consumption and maximizing the production are  important to a proper crop management . In order to obtain information for irrigation management, the aim of the present study was to determine evapotranspiration (ETc),  crop coefficient (Kc) and  water use efficiency (WUE) of maize grown in soil with and without cover, during the various stages of development, using drainage lysimeters. The experiment was conducted in Cauamé campus of the Federal University of Roraima, from 19/04/2014 to 08/07/2014, in Boa Vista, RR. The reference evapotranspiration (ETo) was estimated by the Penman-Monteith method. The results of the corn ETc during the crop cycle in soil with and without coverage were 421.5 and 351.0 mm, respectively. The daily average of ETc were 4.1 mm day-1 for bare soil and 3.4 mm day-1 for soil with cover. The ground cover led to different values of Kc's for corn in the same stages as compared to Kc's from the bare ground. For bare soil, the Kc's observed for the phenological stages I, II, III, and IV were 0.40; 0.84; 1.59 and 0.81, respectively. As for covered soil, the Kc's in the same stadiums mentioned were 0.28; 0.64; 1.49 and 0.48, respectively. The WUE to soil with cover was 1.77 kg m-3 and ground without cover was 1.65 kg m-3. These results show that  soil mulching influenceS maize water consumption throughout its cycle. Keywords: Zea mays. Irrigation. Ground covered. Water consumption.


Water ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2620 ◽  
Author(s):  
Wenge Zhang ◽  
Xianzeng Du ◽  
Anqi Huang ◽  
Huijuan Yin

Proper water use requires its monitoring and evaluation. An indexes system of overall water use efficiency is constructed here that covers water consumption per 10,000 yuan GDP, the coefficient of effective utilization of irrigation water, the water consumption per 10,000 yuan of industrial value added, domestic water consumption per capita of residents, and the proportion of water function zone in key rivers and lakes complying with water-quality standards and is applied to 31 provinces in China. Efficiency is first evaluated by a projection pursuit cluster model. Multidimensional efficiency data are transformed into a low-dimensional subspace, and the accelerating genetic algorithm then optimizes the projection direction, which determines the overall efficiency index. The index reveals great variety in regional water use, with Tianjin, Beijing, Hebei, and Shandong showing highest efficiency. Shanxi, Liaoning, Shanghai, Zhejiang, Henan, Shanxi, and Gansu also use water with high efficiency. Medium efficiency occurs in Inner Mongolia, Jilin, Heilongjiang, Jiangsu, Hainan, Qinghai, Ningxia, and Low efficiency is found for Anhui, Fujian, Jiangxi, Hubei, Hunan, Guangdong, Guangxi, Chongqing, Sichuan, Guizhou, Yunnan, and Xinjiang. Tibet is the least efficient. The optimal projection direction is a* = (0.3533, 0.7014, 0.4538, 0.3315, 0.1217), and the degree of influence of agricultural irrigation efficiency, water consumption per industrial profit, water used per gross domestic product (GDP), domestic water consumption per capita of residents, and environmental water quality on the result has decreased in turn. This may aid decision making to improve overall water use efficiency across China.


2017 ◽  
Vol 45 (2) ◽  
pp. 582-588
Author(s):  
Cristian G. DOMUŢA ◽  
Ana C. PEREȘ ◽  
Radu P. BREJEA ◽  
Ioana M. BORZA ◽  
Eugen JUDE ◽  
...  

The researches were carried out at the Agricultural Research and Development Station, Crișurilor Plain, Oradea, during 1990-2016. They have demonstrated that irrigation is needed every year due to the extension of the drought regions in Romania. Irrigation has become a basic element in the technology of the autumn cabbage crop due to the yearly pedological drought. For cabbage, the minimum watering depth is considered 0-50 cm, while an irrigation average rate of 2,410 m3/ha, with a variation range of 1,330-4,900 m3/ha had to be imposed in order to maintain the soil moisture content on the watering depth between the easily available water content and the field capacity. Irrigation improved the microclimate conditions and the ratio water/temperature + light (Domuţa climate index) increased. Daily water consumption increased as well. As a result, total water consumption increased by 70%, with a variation range of 19-872%. Irrigation determined an yield gain of 153%; water use efficiency (kg/m3) increased by 60.0%; irrigation water use efficiency recorded an average value of 13.4 kg yield gain/m3, with variation range 6.7 kg yield gain/m3-24.2 kg yield gain/m3. The correlations quantified in the soil-water-plant system (number of days with pedological drought, yield, respectively yield gain; Domuţa climate index-yield; water consumption-yield) support irrigation for the autumn cabbage crop from Crişurilor Plain.


Author(s):  
Geovani S. de Lima ◽  
Adaan S. Dias ◽  
Lauriane A. dos A. Soares ◽  
Hans R. Gheyi ◽  
José P. Camara Neto ◽  
...  

ABSTRACT The study aimed to evaluate the effects of irrigation with saline water and fertilization with nitrate (NO3--N) and ammonium (NH4+-N) ratios on growth, flowering, water consumption and water use efficiency of the sesame cv. CNPA G3. The treatments were distributed in randomized blocks in a 5 x 5 factorial with three replicates, referring to five levels of electrical conductivity of the irrigation water - ECw (0.6, 1.2, 1.8, 2.4 and 3.0 dS m-1) and nitrate (NO3--N) and ammonium (NH4+-N) (200/0, 150/50, 100/100, 50/150, 0/200 mg kg-1) ratios. Irrigation with saline water above 0.6 dS m-1 inhibited the growth, delayed flowering and promoted early maturation of capsules of sesame, cv. CNPA G3. The proportion of 0/200 mg kg-1 of NO3--N/NH4+-N promoted the greatest increase relative to stem diameter and height of sesame plants. Water consumption decreases with increasing ECw and was significantly lower in plants fertilized with the proportion of 0/200 of NO3--N/NH4+-N. The interaction between ECw levels and ammonium/nitrate proportions significantly affect water use efficiency, and the highest value was obtained with ECw of 0.6 dS m-1 and fertilization with 150:50 mg kg-1 of NO3--N and NH4+-N.


Author(s):  
Fernando J. da Silva Júnior ◽  
José A. Santos Júnior ◽  
Manassés M. da Silva ◽  
Ênio F. de F. e Silva ◽  
Edivan R. de Souza

ABSTRACT Hydroponic cultivation using saline waters is an alternative for agricultural production, especially in the cultivation of vegetables. Therefore, the present work was conducted with the objective of evaluating the water consumption, water use efficiency and water content, as well as dry matter partitioning of chives (Allium schoenoprasum), cv. Todo Ano Evergreen – Nebuka exposed to six levels of nutrient solution salinity (1.5, 3.0, 4.5, 6.0, 7.5 and 9.0 dS m-1), applied at two circulation frequencies (twice a day at 8 and 16 h; and three times a day - at 8, 12 and 16 h). The level in the nutrient solution reservoir, which decreased according to the water consumption by plants, was replaced with the respective saline water (Experiment I) and supply water (Experiment II). Both experiments used a completely randomized design, in a 6 x 2 factorial scheme, with five replicates. It was observed that increased circulation frequency and the use of supply water in the replacement mitigated the effects of salinity on water consumption, water use efficiency and water content in the plant. However, with the increase in nutrient solution electrical conductivity, dry matter allocation in the roots increased, to the detriment of the shoots.


2014 ◽  
Vol 13 (11) ◽  
pp. 2378-2388 ◽  
Author(s):  
Cheng-yan ZHENG ◽  
Zhen-wen YU ◽  
Yu SHI ◽  
Shi-ming CUI ◽  
Dong WANG ◽  
...  

2013 ◽  
Vol 689 ◽  
pp. 167-171
Author(s):  
Xiang Yang Jiang ◽  
Ching Hin Law ◽  
Jian Kun Yang

Building is a significant contributor for water consumption and it is necessary to increase water use efficiency. This research introduced the current problem in calculating water quota, discussed the calculation of domestic and miscellaneous water consumption and proposed the calculation method for the consumption of unconventional water resource. Finally by a case study, this paper summarized the calculation method and procedure for utilization ratio of unconventional water resource.


Sign in / Sign up

Export Citation Format

Share Document