scholarly journals Seismicity induced by fluid migration in the Main Ethiopian Rift

Author(s):  
Martina Raggiunti ◽  
Derek Keir ◽  
Carolina Pagli ◽  
Aude Lavayssiere

<p>Faults can act as preferential degassing pathways for fluids of deep origin. Their migration and consequently variation of fluid pore pressure can cause a reduction of normal stress on the fault planes and trigger earthquakes. This can generate not only microseismicity but also events with significant magnitude. To understand this phenomenon, we studied the spatial, temporal and waveform characteristics of local seismicity from the northern sector of Main Ethiopian Rift (MER) of East Africa near Fentale and Dofen volcanoes. The seismic database contains events occurred in the MER from October 2001 to January 2003, and acquired by the Ethiopia Afar Geoscientific Experiment (EAGLE Project). The recorded events have been relocated with NLLoc using a new 3D velocity model derived from a wide-angle controlled source experiment. The relocated catalog contains a total of 1543 events with magnitudes between 0 and 4. The seismicity is mainly concentrated in two areas: near the border faults of the Ethiopian plateau and within the rift. On the border faults, events mostly occur down to 20 km depth, with an average depth of ~ 12 km. Within the rift, the events mostly happen down to 15 km depth, with an average depth of ~ 9 km. The seismicity is divided into several clusters aligned parallel to the rift direction, and in profile sections the clusters are mostly dipping steeply sub-vertical and dipping consistent with Andersonian normal faults. The analysis of the temporal-spatial distribution of earthquakes shows that some of the clusters are strongly concentrated in time and in space, and therefore swarm-like. To understand if the different clusters have been conditioned by fluid migration we have also analyzed the frequency content, release of seismic moment, and b-val is cut out. The link between earthquakes and fluid migration has also been explored by interpreting the distribution of seismicity using remote sensing mapping of faults, fumaroles and hydrothermal springs. Understanding where and how the fluid migration occurs will aid geothermal exploration efforts in the region, also improved knowledge of where geothermal activity is linked to seismicity has implications for seismic hazard estimation, which is very important for this densely and economically active areas.</p>

2020 ◽  
Author(s):  
Derek Keir ◽  
Aude Lavayssiere ◽  
Tim Greenfield ◽  
Mike Kendall ◽  
Atalay Ayele

<p>Corbetti is currently one of the fastest uplifting volcanoes globally, with strong evidence from geodetic and gravity data for a subsurface inflating magma body. A dense network of 18 stations has been deployed around Corbetti and Hawassa calderas between February 2016 and October 2017, to place seismic constraints on the magmatic, hydrothermal and fault slip processes occurring around this deforming volcano. We locate 122 events of magnitudes between 0.4 and 4.2 were located using a new local velocity model. The seismicity is focused in two areas: directly beneath Corbetti caldera and beneath the east shore of Lake Hawassa. The shallower 0-5km depth below sea level (b.s.l.) earthquakes beneath Corbetti are mainly focused in NW-elongated clusters at Urji and Chabbi volcanic centres. This distribution is interpreted to be mainly controlled by a northward propagation of hydrothermal fluids from a cross-rift pre-existing fault. Source mechanisms are predominantly strike-slip and different to the normal faulting away from the volcano, suggesting a local rotation of the stress-field. These observations, along with a low Vp/Vs ratio, are consistent with the inflation of a gas-rich sill, likely of silicic composition, beneath Urji. In contrast, the seismicity beneath the east shore of Lake Hawassa extends to greater depth (16 km b.s.l.). These earthquakes are focused on 8-10 km long segmented faults, which are active in seismic swarms. One of these swarms, in August 2016, is focused between 5 and 16 km depth b.s.l. along a steep normal fault beneath the city of Hawassa, highlighting the tectonic hazard for the local population.</p>


2021 ◽  
Vol 29 (3) ◽  
pp. 1239-1260
Author(s):  
Tesfay Kiros Mebrahtu ◽  
Andre Banning ◽  
Ermias Hagos Girmay ◽  
Stefan Wohnlich

AbstractThe volcanic terrain at the western margin of the Main Ethiopian Rift in the Debre Sina area is known for its slope stability problems. This report describes research on the effects of the hydrogeological and hydrochemical dynamics on landslide triggering by using converging evidence from geological, geomorphological, geophysical, hydrogeochemical and isotopic investigations. The chemical characterization indicates that shallow to intermediate aquifers cause groundwater flow into the landslide mass, influencing long-term groundwater-level fluctuations underneath the landslide and, as a consequence, its stability. The low content of total dissolved solids and the bicarbonate types (Ca–Mg–HCO3 and Ca–HCO3) of the groundwater, and the dominantly depleted isotopic signature, indicate a fast groundwater flow regime that receives a high amount of precipitation. The main causes of the landslide are the steep slope topography and the pressure formed during precipitation, which leads to an increased weight of the loose and weathered materials. The geophysical data indicate that the area is covered by unconsolidated sediments and highly decomposed and weak volcanic rocks, which are susceptible to sliding when they get moist. The heterogeneity of the geological materials and the presence of impermeable layers embodied within the highly permeable volcanic rocks can result in the build-up of hydrostatic pressure at their interface, which can trigger landslides. Intense fracturing in the tilted basalt and ignimbrite beds can also accelerate infiltration of water, resulting to the build-up of high hydrostatic pressure causing low effective normal stress in the rock mass, giving rise to landslides.


Climate ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 92
Author(s):  
Tewodros R. Godebo ◽  
Marc A. Jeuland ◽  
Christopher J. Paul ◽  
Dagnachew L. Belachew ◽  
Peter G. McCornick

This work aims to assess water quality for irrigated agriculture, alongside perceptions and adaptations of farmers to climate change in the Main Ethiopian Rift (MER). Climate change is expected to cause a rise in temperature and variability in rainfall in the region, reducing surface water availability and raising dependence on groundwater. The study data come from surveys with 147 farmers living in the Ziway–Shala basin and water quality assessments of 162 samples from groundwater wells and surface water. Most groundwater samples were found to be unsuitable for long term agricultural use due to their high salinity and sodium adsorption ratio, which has implications for soil permeability, as well as elevated bicarbonate, boron and residual sodium carbonate concentrations. The survey data indicate that water sufficiency is a major concern for farmers that leads to frequent crop failures, especially due to erratic and insufficient rainfall. An important adaptation mechanism for farmers is the use of improved crop varieties, but major barriers to adaptation include a lack of access to irrigation water, credit or savings, appropriate seeds, and knowledge or information on weather and climate conditions. Local (development) agents are identified as vital to enhancing farmers’ knowledge of risks and solutions, and extension programs must therefore continue to promote resilience and adaptation in the area. Unfortunately, much of the MER groundwater that could be used to cope with declining viability of rainfed agriculture and surface water availability, is poor in quality. The use of saline groundwater could jeopardize the agricultural sector, and most notably commercial horticulture and floriculture activities. This study highlights the complex nexus of water quality and sufficiency challenges facing the agriculture sector in the region, and should help decision-makers to design feasible strategies for enhancing adaptation and food security.


Geophysics ◽  
2019 ◽  
Vol 84 (1) ◽  
pp. B41-B57 ◽  
Author(s):  
Himanshu Barthwal ◽  
Mirko van der Baan

Microseismicity is recorded during an underground mine development by a network of seven boreholes. After an initial preprocessing, 488 events are identified with a minimum of 12 P-wave arrival-time picks per event. We have developed a three-step approach for P-wave passive seismic tomography: (1) a probabilistic grid search algorithm for locating the events, (2) joint inversion for a 1D velocity model and event locations using absolute arrival times, and (3) double-difference tomography using reliable differential arrival times obtained from waveform crosscorrelation. The originally diffusive microseismic-event cloud tightens after tomography between depths of 0.45 and 0.5 km toward the center of the tunnel network. The geometry of the event clusters suggests occurrence on a planar geologic fault. The best-fitting plane has a strike of 164.7° north and dip angle of 55.0° toward the west. The study region has known faults striking in the north-northwest–south-southeast direction with a dip angle of 60°, but the relocated event clusters do not fall along any mapped fault. Based on the cluster geometry and the waveform similarity, we hypothesize that the microseismic events occur due to slips along an unmapped fault facilitated by the mining activity. The 3D velocity model we obtained from double-difference tomography indicates lateral velocity contrasts between depths of 0.4 and 0.5 km. We interpret the lateral velocity contrasts in terms of the altered rock types due to ore deposition. The known geotechnical zones in the mine indicate a good correlation with the inverted velocities. Thus, we conclude that passive seismic tomography using microseismic data could provide information beyond the excavation damaged zones and can act as an effective tool to complement geotechnical evaluations.


Sign in / Sign up

Export Citation Format

Share Document