Aeolian sediments as a palaeoclimate proxy in the transition zone between the Asian summer monsoon and the mid-latitude westerlies

Author(s):  
Georg Stauch ◽  
Veit Nottebaum ◽  
Frank Lehmkuhl

<p>For this study we analysed OSL (optical stimulated luminescence) ages from aeolian sands or sandy deposits in Mongolia and the north-eastern Tibetan Plateau for the last 21 ka. While the north-eastern Tibetan Plateau is at the northern boundary of the Asian summer monsoon extent, the mid-latitude Westerlies control the climate in Mongolia. Aeolian sediments are widespread in both areas, ranging from thin sand covers with a high silt content in the mountains to large sand sheets with well-developed dune systems in the basins. We collected all available OSL ages, which were published until 2019 and analysed them for their spatial and temporal distribution. The dataset comprises nearly 350 OSL ages. However, while there is a large number of OSL ages available from the north-eastern Tibetan Plateau, only 68 ages from aeolian sediments from central and western Mongolia meet our quality criteria.</p><p>There are some remarkable differences in the timing of aeolian sediment deposition between these two areas. While in both areas only few ages from the last glacial maximum are available, aeolian deposition in Mongolia incepts at the beginning of the late glacial at 17 ka. In contrast, permanent aeolian deposition on the north-eastern Tibetan Plateau did not start before 13 ka. We interpret this signal as a time lag between the strengthening of the mid-latitude westerlies and the Asian summer monsoon after the last glacial. An increase in moisture caused by the two atmospheric systems resulted in an enhanced vegetation cover and consequently in the trapping and permanent fixation of aeolian sediments.</p><p>Furthermore, during the early Holocene at around 10.5 to 8.5 ka no OSL ages are available from Mongolia while on the monsoon influenced north-eastern Tibetan Plateau a comparably high number of OSL ages point to an enhanced trapping of aeolian sediments. At this stage, a straightforward explanation for the gap in the age distribution in Mongolia is not obvious. It might be caused by the generally wet climate conditions due to enhanced moisture transport to the area due to strong westerlies and thus the diminishing of source areas for aeolian entrainment by denser vegetation covers. The enhanced westerlies would be caused by higher insolation values and are reflected in several archives, especially from northern Mongolia. However, the gap might also just be related to the generally low number of OSL ages from Mongolia.</p><p>Both areas show an increase in aeolian activity in the late Holocene, indicating a return to drier conditions after wetter climate conditions in the mid-Holocene. Drier conditions started on the north-eastern Tibetan Plateau at around 3.5 ka and in Mongolia at 2 to 3 ka. This trend is documented in a large number of archives in central Asia and is related to a weakening of the Asian summer monsoon as well as the mid-latitude Westerlies.</p>

2015 ◽  
Vol 33 (8) ◽  
pp. 1051-1058 ◽  
Author(s):  
S. D. Bansod ◽  
S. Fadnavis ◽  
S. P. Ghanekar

Abstract. In this paper, interannual variability of tropospheric air temperatures over the Asian summer monsoon region during the pre-monsoon months is examined in relation to Indian summer monsoon rainfall (ISMR; June to September total rainfall). For this purpose, monthly grid-point temperatures in the entire troposphere over the Asian summer monsoon region and ISMR data for the period 1949–2012 have been used. Spatial correlation patterns are investigated between the temperature field in the lower tropospheric levels during May over the Asian summer monsoon region and ISMR. The results indicate a strong and significant northwest–southeast dipole structure in the spatial correlations over the Indian region, with highly significant positive (negative) correlations over the regions of north India and the western Tibetan Plateau region – region R1 (north Bay of Bengal: region R2). The observed dipole is seen significantly up to a level of 850 hPa and eventually disappears at 700 hPa. Thermal indices evaluated at 850 hPa level, based on average air temperatures over the north India and western Tibetan Plateau region (TI1) and the north Bay of Bengal region (TI2) during May, show a strong, significant relationship with the ISMR. The results are found to be consistent and robust, especially in the case of TI1 during the period of analysis. A physical mechanism for the relationship between these indices and ISMR is proposed. Finally the composite annual cycle of tropospheric air temperature over R1 during flood/drought years of ISMR is examined. The study brings out the importance of the TI1 in the prediction of flood/drought conditions over the Indian subcontinent.


2012 ◽  
Vol 57 ◽  
pp. 71-84 ◽  
Author(s):  
Georg Stauch ◽  
Janneke IJmker ◽  
Steffen Pötsch ◽  
Hui Zhao ◽  
Alexandra Hilgers ◽  
...  

2013 ◽  
Vol 26 (19) ◽  
pp. 7662-7675 ◽  
Author(s):  
Kyong-Hwan Seo ◽  
Jung Ok ◽  
Jun-Hyeok Son ◽  
Dong-Hyun Cha

Abstract Future changes in the East Asian summer monsoon (EASM) are estimated from historical and Representative Concentration Pathway 6.0 (RCP6) experiments of the fifth phase of the Coupled Model Intercomparison Project (CMIP5). The historical runs show that, like the CMIP3 models, the CMIP5 models produce slightly smaller precipitation. A moisture budget analysis illustrates that this precipitation deficit is due to an underestimation in evaporation and ensuing moisture flux convergence. Of the two components of the moisture flux convergence (i.e., moisture convergence and horizontal moist advection), moisture convergence associated with mass convergence is underestimated to a greater degree. Precipitation is anticipated to increase by 10%–15% toward the end of the twenty-first century over the major monsoonal front region. A statistically significant increase is predicted to occur mostly over the Baiu region and to the north and northeast of the Korean Peninsula. This increase is attributed to an increase in evaporation and moist flux convergence (with enhanced moisture convergence contributing the most) induced by the northwestward strengthening of the North Pacific subtropical high (NPSH), a characteristic feature of the future EASM that occurred in CMIP5 simulations. Along the northern and northwestern flank of the strengthened NPSH, intensified southerly or southwesterly winds lead to the increase in moist convergence, enhancing precipitation over these areas. However, future precipitation over the East China Sea is projected to decrease. In the EASM domain, a local mechanism prevails, with increased moisture and moisture convergence leading to a greater increase in moist static energy in the lower troposphere than in the upper troposphere, reducing tropospheric stability.


2018 ◽  
Vol 31 (14) ◽  
pp. 5485-5506 ◽  
Author(s):  
Zhiqi Zhang ◽  
Xuguang Sun ◽  
Xiu-Qun Yang

Abstract East Asian summer monsoon precipitation (EASMP) features complicated interdecadal variability with multiple time periods and spatial patterns. Using century-long datasets of HadISST, CRU precipitation, and the ECMWF twentieth-century reanalysis (ERA-20C), this study examines the joint influence of three oceanic interdecadal signals [i.e., Pacific decadal oscillation (PDO), Atlantic multidecadal oscillation (AMO), and Indian Ocean Basin mode (IOBM)] on the EASMP, which, however, is found not to be simply a linear combination of their individual effects. When PDO and AMO are out of phase, the same-sign SST anomalies occur in the North Pacific and North Atlantic, and a zonally orientated teleconnection wave train appears across the Eurasian mid-to-high latitudes, propagating from the North Atlantic to northern East Asia along the Asian westerly jet waveguide. Correspondingly, the interdecadal precipitation anomalies are characterized by a meridional tripole mode over eastern China. When PDO and AMO are in phase, with opposite sign SST anomalies in the North Pacific and North Atlantic, the sandwich pattern of anomalous stationary Rossby wavenumber tends to reduce the effect of the waveguide in the eastern Mediterranean region, and the teleconnection wave train from the North Atlantic travels only to western central Asia along a great circle route, causing Indian summer monsoon precipitation (ISMP) anomalies. The ISMP anomalies, in turn, interact with the teleconnection wave train induced by the PDO and AMO, leading to a meridional dipole mode of interdecadal precipitation anomalies over eastern China. Through the impact on the ISMP, the IOBM exerts significantly linear modulation on the combined impacts of PDO and AMO, especially over northern East Asia.


Sign in / Sign up

Export Citation Format

Share Document