Mid-altitude cusp dynamics and properties during the IMF By dominated intervals

Author(s):  
Yulia Bogdanova ◽  
C.-Philippe Escoubet ◽  
Robert Fear ◽  
Karlheinz Trattner ◽  
Jean Berchem ◽  
...  

<p>Observations inside the cusp can be used as distant monitoring of the large-scale geometry and properties of the magnetic reconnection at the magnetopause. The recent modelling and observations of the cusp and flux transfer events in the vicinity of the magnetopause show that the reconnection can occur along the X-line extended over many hours of magnetic local time (MLT), comprising sites of both component and anti-parallel reconnection scenarios. Such observations are in contradiction to the statistical DMSP studies showing that the cusp is rather limited in magnetic local time with an average size 2.5 hours of MLT. Moreover, some past observations indicate that the cusp is moving in response to the changes of the IMF By component, suggesting that the cusp is formed due to anti-parallel reconnection along the X-line limited in MLT.</p><p>In this presentation we analyse several events of the mid-altitude cusp observations during the Cluster campaign when the satellites cross the cusp mainly along the longitude in a string-of-pearls configuration during an Interplanetary Magnetic Field (IMF) configuration with a stable and dominant IMF By-component. During this particular Cluster orbit it was possible to define the dawn and dusk cusp boundaries and to study plasma parameters inside different parts of the cusp region. The observations will be discussed in terms of the cusp extension, cusp motion, and possible formation of the ‘double’ cusp structures. Finally, we will consider what these observations reveal about the large-scale reconnection geometry at the magnetopause.</p>

2001 ◽  
Vol 19 (7) ◽  
pp. 707-721 ◽  
Author(s):  
K. A. McWilliams ◽  
T. K. Yeoman ◽  
J. B. Sigwarth ◽  
L. A. Frank ◽  
M. Brittnacher

Abstract. We examine the large-scale ultraviolet aurora and convection responses to a series of flux transfer events that immediately followed a sharp and isolated southward turning of the IMF. During the interval of interest, SuperDARN was monitoring the plasma convection in the dayside northern ionosphere, while the VIS Earth Camera and the Far Ul-traviolet Imager (UVI) were monitoring the northern hemisphere’s ultraviolet aurora. Reconnection signatures were seen in the SuperDARN HF radar data in the postnoon sector following a sharp southward turning of the IMF. The presence of flux transfer events is supported by measurements of a classic dispersed ion signature in the low-altitude cusp from the DMSP spacecraft. Subsequent to the onset of reconnection, the postnoon convection and ultraviolet aurora expanded in concert, reaching 18 MLT in half an hour. The auroral oval was found to move equatorward at the convection speed in the 16–18 MLT sector, implying that it was related directly to an adiaroic magnetospheric boundary. In the present study, we have estimated the field-aligned current response to magnetic reconnection in terms of the vorticity of the ionospheric plasma convection velocity. The convection velocities were obtained using two methods: (a) direct reconstruction of the full vector velocities from bistatic measurements of the convection by the SuperDARN HF radars in a relatively small region of the auroral zone, and (b) from global-scale spherical harmonic fits to the SuperDARN velocities deduced from the map potential model. Regions of high vorticity, which were predicted to be an estimate of a component of the total field-aligned current, agree extremely well with the images of the dayside UV aurora, indicating that, in this case, the plasma vorticity is an excellent estimator of the morphology of dayside field-aligned currents (FACs). The morphology of the aurora and ionospheric electric field in the postnoon sector supports the existence of a dayside current wedge induced in response to dayside reconnection.Key words. Magnetospheric physics (auroral phenomena; magnetosphere-ionosphere interactions; solar wind magne-tosphere interactions)


2014 ◽  
Vol 32 (3) ◽  
pp. 249-261 ◽  
Author(s):  
G. N. Kervalishvili ◽  
H. Lühr

Abstract. We investigate the relationship of the thermospheric density anomaly (ρrel) with the neutral zonal wind velocity (Uzonal), large-scale field-aligned current (FAC), small-scale FAC, and electron temperature (Te) using the superposed epoch analysis (SEA) method in the cusp region. The dependence of these variables on the sign of the interplanetary magnetic field (IMF) By component and local season is of particular interest. Also, the conditions that lead to larger relative density enhancements are investigated. Our results are based on CHAMP satellite data and OMNI online data of IMF for solar maximum (March 2002–March 2007) and minimum (March 2004–March 2009) conditions in the Northern Hemisphere. In the cusp region the SEA technique uses the time and location of the mass density anomaly peaks as reference parameters. On average, the amplitude of the relative density anomaly, ρrel, does not depend on the solar cycle phase, local season, and IMF By sign. Also, it is apparent that the amplitude of IMF By does not have a large influence on ρrel, while the negative IMF Bz amplitude prevailing about half an hour earlier is in good correlation with ρrel. Both the zonal wind velocity and the large-scale FAC (LSFAC) distribution exhibit a clear dependence on the IMF By sign. Uzonal is directed towards dawn for both positive and negative IMF By at all local seasons and for solar maximum and minimum conditions. There is a systematic imbalance between downward (upward) and upward (downward) large-scale FACs peaks equatorward and poleward of the reference point, respectively, for the IMF By+ (By−) case. Relative density enhancements appear halfway between region 1 and region 0 currents in closer proximity to the upward FAC region. FAC densities and mass density anomaly amplitudes are not well correlated, but it is apparent that there is a close spatial relationship between ρrel and LSFAC. At this point we cannot offer any simple functional relation between these two variables, because there seem to be additional quantities controlling this relation.


2006 ◽  
Vol 24 (12) ◽  
pp. 3451-3465 ◽  
Author(s):  
B. Lavraud ◽  
M. F. Thomsen ◽  
S. Wing ◽  
M. Fujimoto ◽  
M. H. Denton ◽  
...  

Abstract. We report on the observation of two distinct cold (Ti<5 keV), dense (Ni>2 cm−3) ion populations at geosynchronous orbit. A statistical study was performed on measurements from the geosynchronous Los Alamos plasma instruments, for the period 1990–2004, and complemented by corresponding large-scale plasma sheet data obtained by mapping DMSP observations in the tail. The first population, which has previously been reported in several studies, is observed in the midnight region of geosynchronous orbit. The second population, which has drawn less attention, is detected on the dawn side of geosynchronous orbit. No such cold, dense population is observed on the dusk side of geosynchronous orbit on a frequent basis. The temporal evolution of various plasma parameters as a function of local time shows that the two populations appear at geosynchronous orbit as distinct populations, since the appearance of a midnight population is not usually associated with that of a dawn population, and vice versa. The midnight ion population is typically observed after the IMF has been northward for some time and is convected inward toward geosynchronous orbit after an observed mild southward turning of the average IMF. It is interpreted that the source of the midnight population is the cold, dense plasma sheet (CDPS). The dawn-side cold and dense ion population is associated with previously strong southward IMF and consequently occurs during substantial geomagnetic activity. These events are typically observed around the end of the main phase of the corresponding Dst decrease, down to −50 nT on average. It is unlikely that this dawn population is simply the low-latitude boundary layer (LLBL) moving closer to Earth because (1) no symmetric dusk population is observed and (2) on average a small sunward flow (~15 km/s) is observed for those events. The cold, dense population at dawn is thus observed during active times (based on Dst, Kp and AE indices) in comparison with the midnight case. However, since the dawn population is observed only around the end of the main Dst decrease, it is concluded that this population does not typically contribute to the Dst decrease during the main phase. This population may rather be transported to geosynchronous orbit by means of a compression and convection enhancement in the magnetosphere, with a preferential access from the dawn flank with no apparent counterpart at dusk. DMSP data suggest that a cold and dense plasma source is mainly present at dawn.


2019 ◽  
Vol 37 (6) ◽  
pp. 1063-1077 ◽  
Author(s):  
Olesya Yakovchuk ◽  
Jan Maik Wissing

Abstract. The magnetic local time (MLT) dependence of electron (0.15–300 keV) and proton (0.15–6900 keV) precipitation into the atmosphere based on National Oceanic and Atmospheric Administration POES and METOP satellite data during 2001–2008 was described. Using modified APEX coordinates the influence of particle energy, substorm activity and geomagnetic disturbance on the MLT flux distribution was statistically analysed. Some of the findings are the following. a. Substorms mostly increase particle precipitation in the night sector by about factor 2–4, but can also reduce it in the day sector.b. MLT dependence can be assigned to particles entering the magnetosphere at the cusp region and magnetospheric particles in combination with energy-specific drifts (in agreement with Newell et al., 2009).c. MLT flux differences of up to 2 orders of magnitude have been identified inside the auroral oval during geomagnetically disturbed conditions. The novelty here is the comprehensive coverage of energy bands and the focus on asymmetry.d. The maximum flux asymmetry ratio depends on particle energy, decreasing with Kp for low energetic particles and increasing with Kp for higher energy electrons, while high energy protons show a more complex dependency. While some aspects may already have been known, the quantification of the flux asymmetry sheds new light on MLT variation.


Author(s):  
Mark Newman

An introduction to the mathematics of the Poisson random graph, the simplest model of a random network. The chapter starts with a definition of the model, followed by derivations of basic properties like the mean degree, degree distribution, and clustering coefficient. This is followed with a detailed derivation of the large-scale structural properties of random graphs, including the position of the phase transition at which a giant component appears, the size of the giant component, the average size of the small components, and the expected diameter of the network. The chapter ends with a discussion of some of the shortcomings of the random graph model.


1999 ◽  
Vol 26 (20) ◽  
pp. 3197-3200 ◽  
Author(s):  
S. G. Shepherd ◽  
R. A. Greenwald ◽  
J. M. Ruohoniemi
Keyword(s):  

2017 ◽  
Vol 20 (2) ◽  
pp. 187-190 ◽  
Author(s):  
Bradley Plunkett ◽  
Andrew Duff ◽  
Ross Kingwell ◽  
David Feldman

The average size of Australian farms in scale and revenue are the globe’s largest. This scale is a result, in part, of low average rural population densities; development patterns in broadacre production; low levels of effective public policy transfers; a stable and suitable institutional setting suitable for corporate and other large scale investment; and low yields. It is also a factor of the natural variability of the country’s climatic systems which have contributed to the scale of extensive northern cattle production; this variability has implications for the pattern of ownership of broadacre and extensive production. Corporate ownership, tends to concentrate production aggregations at sufficient scale to offset its additional overheads in areas of relative climatic stability and to replicate these agroholding aggregations spatially to protect the stability of revenue flows. Family structures are more dominant in areas of greater climatic variability. Of interest is the impact that any increasing climatic variability (versus rapid changes in technology) may have upon this pattern.


2021 ◽  
Author(s):  
Harlan Spence ◽  
Kristopher Klein ◽  
HelioSwarm Science Team

&lt;p&gt;Recently selected for phase A study for NASA&amp;#8217;s Heliophysics MidEx Announcement of Opportunity, the HelioSwarm Observatory proposes to transform our understanding of the physics of turbulence in space and astrophysical plasmas by deploying nine spacecraft to measure the local plasma and magnetic field conditions at many points, with separations between the spacecraft spanning MHD and ion scales.&amp;#160;&amp;#160;HelioSwarm resolves the transfer and dissipation of turbulent energy in weakly-collisional magnetized plasmas with a novel configuration of spacecraft in the solar wind. These simultaneous multi-point, multi-scale measurements of space plasmas allow us to reach closure on two science goals comprised of six science objectives: (1) reveal how turbulent energy is transferred in the most probable, undisturbed solar wind plasma and distributed as a function of scale and time; (2) reveal how this turbulent cascade of energy varies with the background magnetic field and plasma parameters in more extreme solar wind environments; (3) quantify the transfer of turbulent energy between fields, flows, and ion heat; (4) identify thermodynamic impacts of intermittent structures on ion distributions; (5) determine how solar wind turbulence affects and is affected by large-scale solar wind structures; and (6) determine how strongly driven turbulence differs from that in the undisturbed solar wind.&amp;#160;&lt;/p&gt;


2018 ◽  
Vol 611 ◽  
pp. A89 ◽  
Author(s):  
Yueh-Ning Lee ◽  
Patrick Hennebelle

Context. Understanding the origin of the initial mass function (IMF) of stars is a major problem for the star formation process and beyond. Aim. We investigate the dependence of the peak of the IMF on the physics of the so-called first Larson core, which corresponds to the point where the dust becomes opaque to its own radiation. Methods. We performed numerical simulations of collapsing clouds of 1000 M⊙ for various gas equations of state (eos), paying great attention to the numerical resolution and convergence. The initial conditions of these numerical experiments are varied in the companion paper. We also develop analytical models that we compare to our numerical results. Results. When an isothermal eos is used, we show that the peak of the IMF shifts to lower masses with improved numerical resolution. When an adiabatic eos is employed, numerical convergence is obtained. The peak position varies with the eos, and using an analytical model to infer the mass of the first Larson core, we find that the peak position is about ten times its value. By analyzing the stability of nonlinear density fluctuations in the vicinity of a point mass and then summing over a reasonable density distribution, we find that tidal forces exert a strong stabilizing effect and likely lead to a preferential mass several times higher than that of the first Larson core. Conclusions. We propose that in a sufficiently massive and cold cloud, the peak of the IMF is determined by the thermodynamics of the high-density adiabatic gas as well as the stabilizing influence of tidal forces. The resulting characteristic mass is about ten times the mass of the first Larson core, which altogether leads to a few tenths of solar masses. Since these processes are not related to the large-scale physical conditions and to the environment, our results suggest a possible explanation for the apparent universality of the peak of the IMF.


Sign in / Sign up

Export Citation Format

Share Document