TFM-ext tool for the groundwater vulnerability assessment within LandSupport project

Author(s):  
Angelo Basile ◽  
Fabio Terribile ◽  
Marialaura Bancheri ◽  

<p>Geo-Spatial Decision Support Systems (S-DSS) can be usefully employed to support the acquisition, management, and processing of both static and dynamic data (e.g., daily climate), data visualization, and computer on-the-fly applications in order to perform simulation modelling all potentially accessible via the Web. S-DSS are becoming more popular by providing operational tools to a large community of end-users and policy-makers for a sustainable landscape management (i.e. for both agriculture and environmental protection) at different spatial and temporal scales.</p><p>The scope of this work is to present the implementation of the extended Transfer Function Model (TFM-ext) – described in a companion abstract presented in the same session – as an operative tool for the groundwater vulnerability assessment within the larger S-DSS developed for LandSupport H2020 project (https://www.landsupport.eu).</p><p>The tool allows to simulate the mean travel times of a generic solute at different spatio-temporal scales (from the local to the regional scale), considering different land uses.</p><p>In particular, operatively, the end-user can evaluate the filtering capacity of the soils, by: i) defining the region of interest; ii) defining the simulation period; iii) choosing between 6 different land use scenarios (bare soil, alpha-alpha, maize, vine, olive and wheat) or consider his/her own management scenario; iv) defining the depth of interest at which evaluate the solute arrival.</p><p>The outputs are i) the mean travel times that the input solute (given as a fertilizer concentration related to the land-use scenario) takes to reach the defined depth and ii) the quantity of the input solute that reaches the defined depth after one year from its injection.</p><p>The latter information is then associated to the filtering capacity of the soil, which are thus classified according to the percentage of input mass arrived after one year.</p><p>The model was implemented as open source Java application, following the standard of the flexibility to changes and to future expansions, of the optimized computational demand and parallelization, required by the project.</p><p>Three local scale cases are available at the moment (Telesina Valley-IT, Marchfeld-AT and Zala County-HU). Future developments will aim to apply TFM-ext towards larger European spatial extent areas (e.g. regional scales). Furthermore, future develoments  will aim to support selected implementations of Water Framework and Nitrates directives, especially with respect to the systematic required mapping revision of Nitrate Vulnerable Zone and the adoption of best practice.</p><p> </p>

Author(s):  
Stefania Stevenazzi ◽  
Marco Masetti ◽  
Giovanni Pietro Beretta

Groundwater is among the most important freshwater resources. Worldwide, aquifers are experiencing an increasing threat of pollution from urbanization, industrial development, agricultural activities and mining enterprise. Thus, practical actions, strategies and solutions to protect groundwater from these anthropogenic sources are widely required. The most efficient tool, which helps supporting land use planning, while protecting groundwater from contamination, is represented by groundwater vulnerability assessment. Over the years, several methods assessing groundwater vulnerability have been developed: overlay and index methods, statistical and process-based methods. All methods are means to synthesize complex hydrogeological information into a unique document, which is a groundwater vulnerability map, useable by planners, decision and policy makers, geoscientists and the public. Although it is not possible to identify an approach which could be the best one for all situations, the final product should always be scientific defensible, meaningful and reliable. Nevertheless, various methods may produce very different results at any given site. Thus, reasons for similarities and differences need to be deeply investigated. This study demonstrates the reliability and flexibility of a spatial statistical method to assess groundwater vulnerability to contamination at a regional scale. The Lombardy Plain case study is particularly interesting for its long history of groundwater monitoring (quality and quantity), availability of hydrogeological data, and combined presence of various anthropogenic sources of contamination. Recent updates of the regional water protection plan have raised the necessity of realizing more flexible, reliable and accurate groundwater vulnerability maps. A comparison of groundwater vulnerability maps obtained through different approaches and developed in a time span of several years has demonstrated the relevance of the continuous scientific progress, recognizing strengths and weaknesses of each research.


2018 ◽  
Vol 24 (3) ◽  
pp. 293-304 ◽  
Author(s):  
Ismail Chenini ◽  
Adel Zghibi ◽  
Mohamed Haythem Msaddek ◽  
Mahmoud Dlala

Abstract The groundwater vulnerability assessment is normally applied to rural watersheds. However, urbanization modifies the hydrogeological processes. A modified DRASTIC model was adopted to establish a groundwater vulnerability map in an urbanized watershed. The modified DRASTIC model incorporated a land-use map, and net recharge was calculated taking into account the specificity of the urban hydrogeological system. The application of the proposed approach to the Mannouba watershed demonstrates that the groundwater vulnerability indexes range from 80 to 165. The study's results shows that 30 percent of the Mannouba watershed area has a high vulnerability index, 45 percent of the area has a medium index, and 25 percent of the study area has a low vulnerability index. To specify the effect of each DRASTIC factor on the calculated vulnerability index, sensitivity analyses were performed. Land use, topography, and soil media have an important theoretical weight greater than the effective weight. The impact of the vadose zone factor has the most important effective weight and affects the vulnerability index. The sensitivity assessment explored the variation in vulnerability after thematic layer removal. In this analysis, the removal of hydraulic conductivity and impact of vadose zone modified the vulnerability index. Groundwater vulnerability assessment in urbanized watersheds is difficult and has to consider the impact of urbanization in the hydrogeological parameters.


2019 ◽  
Vol 9 (8) ◽  
Author(s):  
Balal Oroji

Abstract Vulnerability assessment to delineate areas that are more susceptible to contamination from anthropogenic sources has become an important element for sensible resource management and land use planning. It has been recognized for its ability to delineate areas that are more likely than others to become contaminated as a result of anthropogenic activities near the earth’s surface. The main methods of mapping and assessing intrinsic vulnerability in porous media are the following: SI, GOD, SINTACS and DRASTIC. The basic purpose of these maps is to divide an area into more classes, each of which will represent a different dynamic for a specific purpose and use. These models have been used to map groundwater vulnerability to pollution in Hamadan–Bahar aquifer. The results showed in models of DRASTIC, SI, GOD and SINTACS, respectively, 7.1, 44.21, 29.56 and 20.16 percent of the areas are high potential vulnerabilities. According to the model DRASTIC at study area, 33.6% of has a low class of groundwater vulnerability to contamination, whereas a total of 29.4% of the study area has a moderate vulnerability. The final results indicate that the aquifer system in the interested area is relatively protected from contamination on the groundwater surface. The correlation between models shows that DRASTIC model has the highest CI, which is 141, and the GOD model has the highest CI, which is 139. Also, the highest CI for SINTACS and SI is 137 and 136, respectively. Therefore, DRASTIC model is the best model among these models for predicting groundwater vulnerability in Hamadan–Bahar plain aquifer.


Author(s):  
Halake Guyo Rendilicha

Groundwater represents 95% of the world’s unfrozen freshwater. The use of groundwater has significantly increased over the past 50 years and is expected to rise in future due to its high reliability during drought seasons, good quality, generally modest development costs and continuous depletion of surface water. Groundwater pollution is becoming a major threat to fresh groundwater availability and sustainability. The deteriorating groundwater quality and increasing contamination poses detrimental risk to human health and ecosystem in many ways, thereby necessitating the need to study the groundwater vulnerability assessment as a preventive strategy to protect the groundwater from surface pollution. The concept of groundwater vulnerability assessment is dated back in 1970s and applied in many developed countries as an environmental tool used for proper land use planning and decision making without jeopardizing groundwater quality.  This paper is a detail review of available literature on the study of groundwater vulnerability assessment in Kenya. The paper revealed that, the vulnerability assessment concept has not been applied as a mechanism to prevent groundwater pollution, hence rarely used in guiding land use planning in Kenya. This review brings to limelight the importance of groundwater vulnerability assessment in management and protection of groundwater resources in Kenya.*Corresponding author; Email:[email protected] Mobile: 0710953283.1. Soil, Water and Environmental Engineering Department Jomo Kenyatta University of Agriculture and Technology, Kenya


Author(s):  
Abdelhakim Lahjouj ◽  
Abdellah El Hmaidi ◽  
Ali Essahlaoui ◽  
M. J. B. Alam ◽  
Mohammed S. A. Siddiquee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document