Monitoring volcanic SO2 emissions with the Infrared Atmospheric Sounding Interferometer

Author(s):  
Isabelle Taylor ◽  
Elisa Carboni ◽  
Tamsin A. Mather ◽  
Roy G. Grainger

<p>Satellite remote sensing has been widely used to make measurements of sulphur dioxide (SO<sub>2</sub>) emissions from volcanoes. The Infrared Atmospheric Sounding Interferometer (IASI) is one such instrument that has been used to examine the emissions from large explosive eruptions.  Much less work has been done using IASI to study the emissions from smaller eruptions, non-eruptive degassing or anthropogenic sources, and similarly it is rarely used for examining long term trends in activity.  Now, when there are three IASI instruments in orbit and with over ten years of data, is the perfect opportunity to explore these topics. This study applied a ‘fast’ linear retrieval developed for IASI in Oxford, across the globe for a ten-year period. Global annual averages were dominated by the emissions from large eruptions (e.g. Nabro in 2011) but elevated signals could also be identified from smaller volcanic sources and industrial centres, suggesting the technique has promise for detecting lower level emissions. A systematic approach was then taken, rotating the linear retrieval output for each orbit at over 100 volcanoes worldwide, with the wind direction at the volcano’s vent, or in cases where the plume was emitted at a greater height, using the observed plume direction. This isolates the elevated signal downwind of the volcano. The rotated outputs were then averaged over monthly, annual and multi-annual time periods. Analysis of the upwind and downwind values establishes whether there is an elevated signal and its intensity. An inventory was then constructed from these observations which show how these emissions varied over a ten-year period. Trends in SO<sub>2 </sub>emission were compared against fluxes generated for the Ozone Monitoring Instrument (OMI) and the number of thermal anomalies detected by the MODVOLC algorithm developed for MODIS.  It was identified for example, that long term trends are more easily identified at high altitude volcanoes such as Popocatepetl, Sabancaya and Nevado del Ruiz. This is consistent with the idea that the instrument performs better in regions with lower levels of water vapour (e.g. above the boundary layer).</p>

1987 ◽  
Vol 67 (3) ◽  
pp. 433-444 ◽  
Author(s):  
JOSEF CIHLAR

A methodology is described for mapping and monitoring the erosion of soil by water, using remote sensing techniques and the universal soil loss equation as the primary tools. Four aspects are covered: mapping baseline sheet and rill erosion, monitoring actual rill and gully erosion, estimating changes in potential sheet and rill erosion, and determining long-term trends. A successful field evaluation of the methodology was undertaken in a potato-growing area of New Brunswick. The implementation of the procedure using state-of-the-art microcomputer and satellite remote sensing technology is proposed. Key words: Soil erosion, remote sensing, geographic information systems


2020 ◽  
Vol 20 (3) ◽  
pp. 1483-1495 ◽  
Author(s):  
Viral Shah ◽  
Daniel J. Jacob ◽  
Ke Li ◽  
Rachel F. Silvern ◽  
Shixian Zhai ◽  
...  

Abstract. Satellite observations of tropospheric NO2 columns are extensively used to infer trends in anthropogenic emissions of nitrogen oxides (NOx≡NO+NO2), but this may be complicated by trends in NOx lifetime. Here we use 2004–2018 observations from the Ozone Monitoring Instrument (OMI) satellite-based instrument (QA4ECV and POMINO v2 retrievals) to examine the seasonality and trends of tropospheric NO2 columns over central–eastern China, and we interpret the results with the GEOS-Chem chemical transport model. The observations show a factor of 3 increase in NO2 columns from summer to winter, which we explain in GEOS-Chem as reflecting a longer NOx lifetime in winter than in summer (21 h versus 5.9 h in 2017). The 2005–2018 summer trends of OMI NO2 closely follow the trends in the Multi-resolution Emission Inventory for China (MEIC), with a rise over the 2005–2011 period and a 25 % decrease since. We find in GEOS-Chem no significant trend of the NOx lifetime in summer, supporting the emission trend reported by the MEIC. The winter trend of OMI NO2 is steeper than in summer over the entire period, which we attribute to a decrease in NOx lifetime at lower NOx emissions. Half of the NOx sink in winter is from N2O5 hydrolysis, which counterintuitively becomes more efficient as NOx emissions decrease due to less titration of ozone at night. The formation of organic nitrates also becomes an increasing sink of NOx as NOx emissions decrease but emissions of volatile organic compounds (VOCs) do not.


2019 ◽  
Author(s):  
Xiaohong Yao ◽  
Leiming Zhang

Abstract. Long-term trends of wet deposition of inorganic ions are affected by multiple factors, among which emission changes and climate conditions are dominant ones. To assess the effectiveness of emission reductions on the wet deposition of pollutants of interest, contributions from these factors to the long-term trends of wet deposition must be isolated. For this purpose, a two-step approach for preprocessing wet deposition data is presented herein. This new approach aims to reduce the impact of climate anomalies on the trend analysis so that the impact of emission reductions on wet deposition can be revealed. This approach is applied to a two-decade wet deposition dataset of sulfate (SO42−), nitrate (NO3−) and ammonium (NH4+) at rural Canadian sites. Analysis results show that the approach allows for robustly identifying inflection points on decreasing trends in the wet deposition fluxes of SO42− and NO3− in northern Ontario and Québec. The inflection points match well with the three-phase mitigation of SO2 emissions and two-phase mitigation of NOx emissions in Ontario. Improved correlations between the wet deposition of ions and their precursors' emissions were obtained after reducing the impact from climate anomalies. Furthermore, decadal climate anomalies were identified as dominating the decreasing trends in the wet deposition fluxes of SO42− and NO3− at a western coastal site. Long-term variations in NH4+ wet deposition showed no clear trends due to the compensating effects between NH3 emissions, climate anomalies, and chemistry associated with the emission changes of sulfur and nitrogen.


2020 ◽  
Author(s):  
Karn Vohra ◽  
Eloise A. Marais ◽  
Shannen Suckra ◽  
Louisa Kramer ◽  
William J. Bloss ◽  
...  

Abstract. Air quality networks in cities are costly, inconsistent, and only monitor a few pollutants. Space-based instruments provide global coverage spanning more than a decade to determine trends in air quality and address deficiencies in surface networks. Here we target cities in the UK (London and Birmingham) and India (Delhi and Kanpur) and use observations of nitrogen dioxide (NO2) from the Ozone Monitoring Instrument (OMI), ammonia (NH3) from the Infrared Atmospheric Sounding Interferometer (IASI), formaldehyde (HCHO) from OMI as a proxy for non-methane volatile organic compounds (NMVOCs), and aerosol optical depth (AOD) from the Moderate Resolution Imaging Spectroradiometer (MODIS) for PM2.5. We assess the skill of these products at reproducing monthly variability in surface concentrations of air pollutants where available. We find temporal consistency between column and surface NO2 in cities in the UK and India (R = 0.5–0.7) and NH3 at two of three UK supersites (R = 0.5–0.7), but not between AOD and surface PM2.5 (R  = 0.8) and reproduces significant decline in surface PM2.5 in London (2.7 % a−1) and Birmingham (3.7 % a−1) since 2009. We derive long-term trends in the four cities for 2005–2018 from OMI and MODIS and for 2008–2018 from IASI. Concentrations of all pollutants increase in Delhi, suggesting no air quality improvements there, despite rollout of controls on industrial and transport sectors. Kanpur experiences a significant and substantial (3.1 % a−1) increase in PM2.5. Concentrations of NO2, NH3 and PM2.5 decline in London and Birmingham likely due in large part to emissions controls on vehicles. Trends are significant only for NO2 and PM2.5. Reactive NMVOCs decline in Birmingham, but the trend is not significant, and there is a recent (2012–2018) steep (> 9 % a−1) increase in reactive NMVOCs in London. This may reflect increased contribution of oxygenated VOCs from household products, the food and beverage industry, and domestic wood burning, with implications for formation of ozone in a VOC-limited city.


2019 ◽  
Vol 16 (24) ◽  
pp. 4747-4763
Author(s):  
Miho Ishizu ◽  
Yasumasa Miyazawa ◽  
Tomohiko Tsunoda ◽  
Tsuneo Ono

Abstract. In recent decades, acidification of the open ocean has shown a consistent increase. However, analysis of long-term data in coastal seawater shows that the pH is highly variable because of coastal processes and anthropogenic carbon inputs. It is therefore important to understand how anthropogenic carbon inputs and other natural or anthropogenic factors influence the temporal trends in pH in coastal seawater. Using water quality data collected at 289 monitoring sites as part of the Water Pollution Control Program, we evaluated the long-term trends of the pHinsitu in Japanese coastal seawater at ambient temperature from 1978 to 2009. We found that the annual maximum pHinsitu, which generally represents the pH of surface waters in winter, had decreased at 75 % of the sites but had increased at the remaining sites. The temporal trend in the annual minimum pHinsitu, which generally represents the pH of subsurface water in summer, also showed a similar distribution, although it was relatively difficult to interpret the trends of annual minimum pHinsitu because the sampling depths differed between the stations. The annual maximum pHinsitu decreased at an average rate of −0.0024 yr−1, with relatively large deviations (0.0042 yr−1) from the average value. Detailed analysis suggested that the decrease in pH was caused partly by warming of winter surface waters in Japanese coastal seawater. The pH, when normalized to 25 ∘C, however, showed decreasing trends, suggesting that dissolved inorganic carbon from anthropogenic sources is increasing in Japanese coastal seawater.


2020 ◽  
Vol 20 (2) ◽  
pp. 721-733
Author(s):  
Xiaohong Yao ◽  
Leiming Zhang

Abstract. Long-term trends of wet deposition of inorganic ions are affected by multiple factors, among which emission changes and climate conditions are dominant ones. To assess the effectiveness of emission reductions on the wet deposition of pollutants of interest, contributions from these factors to the long-term trends of wet deposition must be isolated. For this purpose, a two-step approach for preprocessing wet deposition data is presented herein. This new approach aims to reduce the impact of climate anomalies on the trend analysis so that the impact of emission reductions on the wet deposition can be revealed. This approach is applied to a 2-decade wet deposition dataset of sulfate (SO42-), nitrate (NO3-), and ammonium (NH4+) at rural Canadian sites. Analysis results show that the approach allows for statistically identifying inflection points on decreasing trends in the wet deposition fluxes of SO42- and NO3- in northern Ontario and Quebec. The inflection points match well with the three-phase mitigation of SO2 emissions and two-phase mitigation of NOx emissions in Ontario. Improved correlations between the wet deposition of ions and their precursors' emissions were obtained after reducing the impact from climate anomalies. Furthermore, decadal climate anomalies were identified as dominating the decreasing trends in the wet deposition fluxes of SO42- and NO3- at a western coastal site. Long-term variations in NH4+ wet deposition showed no clear trends due to the compensating effects between NH3 emissions, climate anomalies, and chemistry associated with the emission changes of sulfur and nitrogen.


2021 ◽  
Vol 21 (8) ◽  
pp. 6275-6296
Author(s):  
Karn Vohra ◽  
Eloise A. Marais ◽  
Shannen Suckra ◽  
Louisa Kramer ◽  
William J. Bloss ◽  
...  

Abstract. Air quality networks in cities can be costly and inconsistent and typically monitor a few pollutants. Space-based instruments provide global coverage spanning more than a decade to determine trends in air quality, augmenting surface networks. Here we target cities in the UK (London and Birmingham) and India (Delhi and Kanpur) and use observations of nitrogen dioxide (NO2) from the Ozone Monitoring Instrument (OMI), ammonia (NH3) from the Infrared Atmospheric Sounding Interferometer (IASI), formaldehyde (HCHO) from OMI as a proxy for non-methane volatile organic compounds (NMVOCs), and aerosol optical depth (AOD) from the Moderate Resolution Imaging Spectroradiometer (MODIS) for PM2.5. We assess the skill of these products at reproducing monthly variability in surface concentrations of air pollutants where available. We find temporal consistency between column and surface NO2 in cities in the UK and India (R = 0.5–0.7) and NH3 at two of three rural sites in the UK (R = 0.5–0.7) but not between AOD and surface PM2.5 (R < 0.4). MODIS AOD is consistent with AERONET at sites in the UK and India (R ≥ 0.8) and reproduces a significant decline in surface PM2.5 in London (2.7 % a−1) and Birmingham (3.7 % a−1) since 2009. We derive long-term trends in the four cities for 2005–2018 from OMI and MODIS and for 2008–2018 from IASI. Trends of all pollutants are positive in Delhi, suggesting no air quality improvements there, despite the roll-out of controls on industrial and transport sectors. Kanpur, identified by the WHO as the most polluted city in the world in 2018, experiences a significant and substantial (3.1 % a−1) increase in PM2.5. The decline of NO2, NH3, and PM2.5 in London and Birmingham is likely due in large part to emissions controls on vehicles. Trends are significant only for NO2 and PM2.5. Reactive NMVOCs decline in Birmingham, but the trend is not significant. There is a recent (2012–2018) steep (> 9 % a−1) increase in reactive NMVOCs in London. The cause for this rapid increase is uncertain but may reflect the increased contribution of oxygenated volatile organic compounds (VOCs) from household products, the food and beverage industry, and domestic wood burning, with implications for the formation of ozone in a VOC-limited city.


Author(s):  
Heather Churchill ◽  
Jeremy M. Ridenour

Abstract. Assessing change during long-term psychotherapy can be a challenging and uncertain task. Psychological assessments can be a valuable tool and can offer a perspective from outside the therapy dyad, independent of the powerful and distorting influences of transference and countertransference. Subtle structural changes that may not yet have manifested behaviorally can also be assessed. However, it can be difficult to find a balance between a rigorous, systematic approach to data, while also allowing for the richness of the patient’s internal world to emerge. In this article, the authors discuss a primarily qualitative approach to the data and demonstrate the ways in which this kind of approach can deepen the understanding of the more subtle or complex changes a particular patient is undergoing while in treatment, as well as provide more detail about the nature of an individual’s internal world. The authors also outline several developmental frameworks that focus on the ways a patient constructs their reality and can guide the interpretation of qualitative data. The authors then analyze testing data from a patient in long-term psychoanalytically oriented psychotherapy in order to demonstrate an approach to data analysis and to show an example of how change can unfold over long-term treatments.


Sign in / Sign up

Export Citation Format

Share Document