scholarly journals 2.5 years of TROPOMI S5P total ozone column data: geophysical global ground-based validation and inter-comparison with other satellite missions

Author(s):  
Katerina Garane ◽  
Maria-Elissavet Koukouli ◽  
Tijl Verhoelst ◽  
Christophe Lerot ◽  
Klaus-Peter Heue ◽  
...  

<p>The Sentinel-5 Precursor (S5P) mission, launched in October 2017, carries the TROPOspheric Monitoring Instrument (TROPOMI), which provides a daily global coverage at a spatial resolution as high as 5.5 km x 3.5 km and will extend the European atmospheric composition record initiated with GOME/ERS-2 in 1995. Due to the ongoing need to understand and monitor the recovery of the ozone layer, as well as the evolution of tropospheric pollution, ozone remains one of the leading species of interest during this mission.</p><p>In this work, two and a half years of TROPOMI near real time (NRTI) and offline (OFFL) total ozone column (TOC) products are presented and compared to daily and individual, globally distributed, ground-based quality assured Brewer and Dobson TOC measurements. The daily ground-based ozone measurements used here are deposited in the World Ozone and Ultraviolet Radiation Data Centre (WOUDC). The individual Brewer measurements are made available by the European Brewer Network (Eubrewnet). Furthermore, twilight zenith-sky measurements obtained with ZSL-DOAS (Zenith Scattered Light Differential Optical Absorption Spectroscopy) instruments, which form part of the SAOZ network (Système d’Analyse par Observation Zénitale), are used for the validation.</p><p>The quality of the TROPOMI TOC data is evaluated in terms of the influence of various geophysical quantities such as location, solar zenith angle, viewing angle, season, effective temperature, surface albedo and clouds. The overall statistical analysis of the global comparison shows that the mean bias and the mean standard deviation of the percentage difference between TROPOMI and ground-based TOC is within 0 –1.5% and 2.5 %–4.5 %, respectively. Moreover, based on the full available dataset, a first attempt is made for a drift investigation.</p><p>Additionally, the TROPOMI OFFL and NRTI products are evaluated against already known spaceborne sensors, namely, the Ozone Mapping Profiler Suite, on board the Suomi National Polar-orbiting Partnership (OMPS/Suomi-NPP), NASA, and the Global Ozone Monitoring Experiment 2 (GOME-2), on board the Metop-A (GOME-2/Metop-A) and Metop-B (GOME-2/Metop-B) satellites. This analysis shows a very good agreement for both TROPOMI products with well-established instruments, with the absolute differences in mean bias and mean standard deviation being below +0.7% and 1%, respectively.</p>

2019 ◽  
Author(s):  
Katerina Garane ◽  
Maria-Elissavet Koukouli ◽  
Tijl Verhoelst ◽  
Vitali Fioletov ◽  
Christophe Lerot ◽  
...  

Abstract. In October 2017, the Sentinel-5 Precursor (S5p) mission was launched, carrying the TROPOspheric Monitoring Instrument, TROPOMI, which provides a daily global coverage at a spatial resolution as high as 7 km × 3.5 km and is expected to extend the European atmospheric composition record initiated with GOME/ERS-2 in 1995, bringing up significant new components to the scientific knowledge of atmospheric processes. Due to the ongoing need to understand and monitor the recovery of the ozone layer, as well as the evolution of tropospheric pollution, total ozone remains one of the leading species of interest during this mission. In this work the TROPOMI Near-Real Time, NRTI, and Offline, OFFL, total ozone column (TOC) products are presented and compared to daily ground-based quality-assured Brewer and Dobson TOC measurements deposited in the World Ozone and Ultraviolet Radiation Data Centre (WOUDC). Additional comparisons to individual Brewer measurements from the Canadian Brewer Network and the European Brewer Network (Eubrewnet) are performed. Furthermore, twilight zenith-sky measurements obtained with ZSL-DOAS (Zenith Scattered Light Differential Optical Absorption Spectroscopy) instruments, that form part of the SAOZ network (Système d'Analyse par Observation Zénitale), are used for the validation. The quality of the TROPOMI TOC data is evaluated in terms of the influence of location, solar zenith and viewing angles, season, effective temperature, surface albedo and clouds. For this purpose, globally distributed ground-based measurements have been utilized as the background truth. The overall statistical analysis of the global comparison shows that the mean bias and the mean standard deviation of the percentage difference between TROPOMI and ground-based TOC is within 0–1.5 % and 2.5–4.5 %, respectively. The mean bias that results from the comparisons is well within the S5p product requirements, while the mean standard deviation is very close to those limits, especially considering that the statistics shown here originate both from the satellite and the ground-based measurements. Additionally, the TROPOMI OFFL and NRTI products are evaluated against already known space-borne sensors, namely, the Ozone Mapping Profiler Suite on board the Suomi National Polar-orbiting Partnership (OMPS/Suomi-NPP), NASA v2 TOCs, and the Global Ozone Monitoring Experiment–2 (GOME-2) on board the MetοpΑ (GOME-2/MetοpΑ) and MetopB (GOME-2/MetopB) satellites. This analysis shows a very good agreement for both TROPOMI products to well established instruments, with the absolute differences in mean bias and mean standard deviation being below 0.7 % and 1 %, respectively. These results assure the scientific community of the good quality of the TROPOMI TOC products during its first year of operation and enhance the already high expectations that S5p TROPOMI will play a very significant role in the continuity of the ozone monitoring from space.


2019 ◽  
Vol 12 (10) ◽  
pp. 5263-5287 ◽  
Author(s):  
Katerina Garane ◽  
Maria-Elissavet Koukouli ◽  
Tijl Verhoelst ◽  
Christophe Lerot ◽  
Klaus-Peter Heue ◽  
...  

Abstract. In October 2017, the Sentinel-5 Precursor (S5P) mission was launched, carrying the TROPOspheric Monitoring Instrument (TROPOMI), which provides a daily global coverage at a spatial resolution as high as 7 km × 3.5 km and is expected to extend the European atmospheric composition record initiated with GOME/ERS-2 in 1995, enhancing our scientific knowledge of atmospheric processes with its unprecedented spatial resolution. Due to the ongoing need to understand and monitor the recovery of the ozone layer, as well as the evolution of tropospheric pollution, total ozone remains one of the leading species of interest during this mission. In this work, the TROPOMI near real time (NRTI) and offline (OFFL) total ozone column (TOC) products are presented and compared to daily ground-based quality-assured Brewer and Dobson TOC measurements deposited in the World Ozone and Ultraviolet Radiation Data Centre (WOUDC). Additional comparisons to individual Brewer measurements from the Canadian Brewer Network and the European Brewer Network (Eubrewnet) are performed. Furthermore, twilight zenith-sky measurements obtained with ZSL-DOAS (Zenith Scattered Light Differential Optical Absorption Spectroscopy) instruments, which form part of the SAOZ network (Système d'Analyse par Observation Zénitale), are used for the validation. The quality of the TROPOMI TOC data is evaluated in terms of the influence of location, solar zenith angle, viewing angle, season, effective temperature, surface albedo and clouds. For this purpose, globally distributed ground-based measurements have been utilized as the background truth. The overall statistical analysis of the global comparison shows that the mean bias and the mean standard deviation of the percentage difference between TROPOMI and ground-based TOC is within 0 –1.5 % and 2.5 %–4.5 %, respectively. The mean bias that results from the comparisons is well within the S5P product requirements, while the mean standard deviation is very close to those limits, especially considering that the statistics shown here originate both from the satellite and the ground-based measurements. Additionally, the TROPOMI OFFL and NRTI products are evaluated against already known spaceborne sensors, namely, the Ozone Mapping Profiler Suite, on board the Suomi National Polar-orbiting Partnership (OMPS/Suomi-NPP), NASA v2 TOCs, and the Global Ozone Monitoring Experiment 2 (GOME-2), on board the Metop-A (GOME-2/Metop-A) and Metop-B (GOME-2/Metop-B) satellites. This analysis shows a very good agreement for both TROPOMI products with well-established instruments, with the absolute differences in mean bias and mean standard deviation being below +0.7 % and 1 %, respectively. These results assure the scientific community of the good quality of the TROPOMI TOC products during its first year of operation and enhance the already prevalent expectation that TROPOMI/S5P will play a very significant role in the continuity of ozone monitoring from space.


2021 ◽  
Vol 14 (7) ◽  
pp. 4915-4928
Author(s):  
Ralf Zuber ◽  
Ulf Köhler ◽  
Luca Egli ◽  
Mario Ribnitzky ◽  
Wolfgang Steinbrecht ◽  
...  

Abstract. During the 2019/2020 measurement campaign at Hohenpeißenberg (Germany) and Davos (Switzerland) we compared the well-established Dobson and Brewer spectrometers (single- and double-monochromator Brewer) with newer BTS array-spectroradiometer-based systems in terms of total ozone column (TOC) determination. The aim of this study is to validate the BTS performance in a longer-term TOC analysis over more than 1 year with seasonal and weather influences. Two different BTS setups have been used – a fibre-coupled entrance optic version by PMOD/WRC called Koherent and a diffusor optic version from Gigahertz Optik GmbH called BTS-Solar, which proved to be simpler in terms of calibration. The array-spectrometer-based BTS systems have been calibrated with traceability to NMI, and both versions of TOC retrieval algorithms are based on spectral measurements in the range of 305 to 350 nm instead of single-wavelength or wavelength pair measurements as per Brewer or Dobson. The two BTS-based systems, however, used fundamentally different retrieval algorithms for the TOC assessment, whereby the retrieval of the BTS-Solar turned out to achieve significantly smaller seasonal drifts. The intercomparison showed a difference of the BTS-Solar to Brewers of < 0.1 % with an expanded standard deviation (k=2) of < 1.5 % over the whole measurement campaign. Koherent showed a difference of 1.7 % with an expanded standard deviation (k=2) of 2.7 % mostly caused by a significant seasonal variation. To summarize, the BTS-Solar performed at the level of Brewers in the comparison in Hohenpeißenberg. The BTS-Solar showed very small dependence on the slant path column compared to the double-monochromator Brewer and performed better than the single-monochromator Brewer. Koherent showed a strong seasonal variation in Davos due to the sensitivity of its ozone retrieval algorithm to stratospheric temperature.


2021 ◽  
Vol 14 (8) ◽  
pp. 5771-5789
Author(s):  
Andrea Orfanoz-Cheuquelaf ◽  
Alexei Rozanov ◽  
Mark Weber ◽  
Carlo Arosio ◽  
Annette Ladstätter-Weißenmayer ◽  
...  

Abstract. A scientific total ozone column product from Ozone Mapping and Profiler Suite Nadir Mapper (OMPS-NM) observations and the retrieval algorithm are presented. The retrieval employs the weighting function fitting approach (WFFA), a modification of the weighting function differential optical absorption spectroscopy (WFDOAS) technique. The total ozone columns retrieved with WFFA are in very good agreement with other datasets. A mean difference of 0.3 % with respect to ground-based Brewer and Dobson measurements is observed. Seasonal and latitudinal variations are well represented and in agreement with other satellite datasets. The comparison of our product with the operational product of OMPS-NM indicates a mean bias of around zero. The comparison with the Tropospheric Monitoring Instrument products (S5P/TROPOMI) OFFL and WFDOAS shows a persistent negative bias of about −0.6 % for OFFL and −2.5 % for WFDOAS. Larger differences are only observed in the polar regions. This data product is intended to be used for trend analysis and the retrieval of tropospheric ozone combined with the OMPS limb profiler data.


2021 ◽  
Author(s):  
Andrea Orfanoz-Cheuquelaf ◽  
Alexei Rozanov ◽  
Mark Weber ◽  
Carlo Arosio ◽  
Annette Ladstätter-Weißenmayer ◽  
...  

Abstract. A scientific total ozone column product from the Ozone Mapping and Profiler Suite Nadir Mapper (OMPS-NM) observations and its retrieval algorithm are presented. The retrieval employs the Weighting Function Fitting Approach (WFFA), a modification of the Weighting Function Differential Optical Absorption Spectroscopy (WFDOAS) technique. The total ozone columns retrieved with WFFA are in very good agreement with other datasets. A mean difference of 0.6 % with respect to ground-based Brewer and Dobson measurements is observed. Seasonal and latitudinal variations are well represented and in agreement with other satellite datasets. The comparison of our product with the scientific product of OMPS-NM indicate a mean bias of around 0.1 %. The comparison with the Tropospheric Monitoring Instrument products (S5P/TROPOMI) OFFL and WFDOAS, shows a persistent negative bias of about −0.5 % for OFFL and –2 % for WFDOAS. Larger differences are only observed in the polar regions. This data product is intended to be used for trend analysis and the retrieval of tropospheric ozone combined with the OMPS limb profiler data.


2020 ◽  
pp. 13
Author(s):  
P. F. Orte ◽  
E. Luccini ◽  
E. Wolfram ◽  
F. Nollas ◽  
J. Pallotta ◽  
...  

<p>Total ozone column (TOC) measurements through the Ozone Monitoring Instrument (OMI/NASA EOSAura) are compared with ground-based observations made using Dobson and SAOZ instruments for the period 2004–2019 and 2008–02/2020, respectively. The OMI data were inverted using the Differential Optical Absorption Spectroscopy algorithm (overpass OMI-DOAS). The four ground-based sites used for the analysis are located in subpolar and subtropical latitudes spanning from 34°S to 54°S in the Southern Hemisphere, in the Argentine cities of Buenos Aires (34.58°S, 58.36°W; 25 m a.s.l.), Comodoro Rivadavia (45.86°S, 67.50°W; 46 m a.s.l.), Río Gallegos (51.60°S, 69.30°W; 72 m a.s.l.) and Ushuaia (54.80°S, 68.30°W; 14 m a.s.l.). The linear regression analyzes showed correlation values greater than 0.90 for all sites. The OMI measurements revealed an overestimation of less than 4 % with respect to the Dobson instruments, while the comparison with the SAOZ instrument presented a very low underestimation of less than 1 %.</p>


2021 ◽  
Vol 13 (8) ◽  
pp. 1594
Author(s):  
Songkang Kim ◽  
Sang-Jong Park ◽  
Hana Lee ◽  
Dha Hyun Ahn ◽  
Yeonjin Jung ◽  
...  

The ground-based ozone observation instrument, Brewer spectrophotometer (Brewer), was used to evaluate the quality of the total ozone column (TOC) produced by multiple polar-orbit satellite measurements at three stations in Antarctica (King Sejong, Jang Bogo, and Zhongshan stations). While all satellite TOCs showed high correlations with Brewer TOCs (R = ~0.8 to 0.9), there are some TOC differences among satellite data in austral spring, which is mainly attributed to the bias of Atmospheric Infrared Sounder (AIRS) TOC. The quality of satellite TOCs is consistent between Level 2 and 3 data, implying that “which satellite TOC is used” can induce larger uncertainty than “which spatial resolution is used” for the investigation of the Antarctic TOC pattern. Additionally, the quality of satellite TOC is regionally different (e.g., OMI TOC is a little higher at the King Sejong station, but lower at the Zhongshan station than the Brewer TOC). Thus, it seems necessary to consider the difference of multiple satellite data for better assessing the spatiotemporal pattern of Antarctic TOC.


2021 ◽  
Vol 13 (11) ◽  
pp. 2098
Author(s):  
Yuanyuan Qian ◽  
Yuhan Luo ◽  
Fuqi Si ◽  
Haijin Zhou ◽  
Taiping Yang ◽  
...  

Global measurements of total ozone are necessary to evaluate ozone hole recovery above Antarctica. The Environmental Trace Gases Monitoring Instrument (EMI) onboard GaoFen 5, launched in May 2018, was developed to measure and monitor the global total ozone column (TOC) and distributions of other trace gases. In this study, some of the first global TOC results of the EMI using the differential optical absorption spectroscopy (DOAS) method and validation with ground-based TOC measurements and data derived from Ozone Monitoring Instrument (OMI) and TROPOspheric Monitoring Instrument (TROPOMI) observations are presented. Results show that monthly average EMI TOC data had a similar spatial distribution and a high correlation coefficient (R ≥ 0.99) with both OMI and TROPOMI TOC. Comparisons with ground-based measurements from the World Ozone and Ultraviolet Radiation Data Centre also revealed strong correlations (R > 0.9). Continuous zenith sky measurements from zenith scattered light differential optical absorption spectroscopy instruments in Antarctica were also used for validation (R = 0.9). The EMI-derived observations were able to account for the rapid change in TOC associated with the sudden stratospheric warming event in October 2019; monthly average TOC in October 2019 was 45% higher compared to October 2018. These results indicate that EMI TOC derived using the DOAS method is reliable and has the potential to be used for global TOC monitoring.


1998 ◽  
Vol 22 (11) ◽  
pp. 1501-1504
Author(s):  
A.J.M Piters ◽  
P.F Levelt ◽  
M.A.F Allaart ◽  
H.M Kelder

Sign in / Sign up

Export Citation Format

Share Document