Depth-dependent analysis of fracture patterns inferred from image logs and cores in crystalline rocks

Author(s):  
Mohammad Javad Afshari Moein

<p>Enhanced Geothermal System (EGS) development requires an accurate fracture network characterization. The knowledge on the fracture network is fundamental for setting up numerical models to simulate the activated processes in hydraulic stimulation experiments. However, direct measurement of fracture network properties at great depth is limited to the data from exploration wells. Geophysical logging techniques and continuous coring, if available, provide the location and orientation of fractures that intersect the wellbore. The statistical parameters derived from borehole datasets (either from image logs or cores) constrain stochastic realizations of the rock mass, known as Discrete Fracture Network (DFN) models. However, accurate parametrization of DFN models requires sufficient knowledge on the depth-dependent spatial distribution of fractures in the earth’s crust.</p><p>This analysis includes a unique collection of fracture datasets from six deep (i.e. 2-5 km depth) boreholes drilled into crystalline basement rocks at the same tectonic settings. All the wells were drilled in the Upper Rhine Graben in Soultz-sous-Forêts Enhanced Geothermal System, France, except the well that was drilled in Basel geothermal project, Switzerland. The datasets included both borehole image logs and core samples, which have a higher resolution. Two-point correlation function was selected to characterize the power-law scaling of fracture patterns. The correlation dimension of spatial patterns showed no systematic variations with depth at one standard deviation level of uncertainty in moving windows of sufficient number of fractures along any of the boreholes. This implies that a single correlation dimension is sufficient to address the global scaling properties of the fractures in crystalline rocks. One could also anticipate the spatial distribution of deeper reservoir conditions from shallower datasets. On the contrary, the fracture density showed some variations with depth that are sometimes consistent with changes in lithology and geological settings at the time of fracture formation.</p>

Geosciences ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 520
Author(s):  
Arezki Chabani ◽  
Ghislain Trullenque ◽  
Johanne Klee ◽  
Béatrice A. Ledésert

Scanlines constitute a robust method to better understand in 3D the fracture network variability in naturally fractured geothermal reservoirs. This study aims to characterize the spacing variability and the distribution of fracture patterns in a fracture granitic reservoir, and the impact of the major faults on fracture distribution and fluid circulation. The analogue target named the Noble Hills (NH) range is located in Death Valley (DV, USA). It is considered as an analogue of the geothermal reservoir presently exploited in the Upper Rhine Graben (Soultz-sous-Forêts, eastern of France). The methodology undertaken is based on the analyze of 10 scanlines located in the central part of the NH from fieldwork and virtual (photogrammetric models) data. Our main results reveal: (1) NE/SW, E/W, and NW/SE fracture sets are the most recorded orientations along the virtual scanlines; (2) spacing distribution within NH shows that the clustering depends on fracture orientation; and (3) a strong clustering of the fracture system was highlighted in the highly deformed zones and close to the Southern Death Valley fault zone (SDVFZ) and thrust faults. Furthermore, the fracture patterns were controlled by the structural heritage. Two major components should be considered in reservoir modeling: the deformation gradient and the proximity to the regional major faults.


2021 ◽  
Author(s):  
Gemma Mitjanas ◽  
Gemma Alías ◽  
David García-Martínez ◽  
Pilar Queralt ◽  
Juanjo Ledo

<p>La Garriga-Samalús geothermal system is located in the Catalan Coastal Ranges (CCR) (NE Spain). The CCR is a NE-SW horst and graben system with two lifted mountain chains, the Precoastal (PR) and Coastal ranges (CR), separated by the Vallès basin. An Hercynian highly fractured granodiorite thrusts the Paleozoic metamorphic units in the northern part of the PR. Towards the south, the intrusive unit is in contact with the Miocene rocks of the Vallès basin by a major Neogene normal fault, the Vallès fault.</p><p>Previous works in this area showed that the fractured zone associated to the Vallès normal fault, located in the Hercynian granodiorite, could act as the geothermal reservoir as well as the fast-ascending path for the hot fluids. Although some geophysical prospections and exploration boreholes have been made in La Garriga-Samalús area, it is still necessary to understand and model the fracture network.</p><p>This study presents a multiscale fracture analysis of the granodiorite from outcrops and boreholes samples. This multiscale analysis combines satellite pictures, field studies and laboratory measurements of both field and borehole samples.</p><p>The fracture data collection has allowed the identification of 3 major fracture sets related to the main tectonic events of the CCR, in addition to 7 other minor fracture groups. Through the variation of fracture density in the footwall, a 10 meters fault core, and an asymmetric damage zone of approximately 300 m, have been identified. The damage zone shows an increasing fracture density towards the northern and southern limits of the granodiorite, which are an alpine thrust and the Vallès fault, respectively. In the fault core, the presence of cemented rocks like cataclasites with hydrothermal sealed fractures result in low porosity and permeability. Contrary, the damage zone consists of minor faults and related fractures which may enhance fault permeability with respect the core and its protolith.</p><p>In order to characterize fractures in depth, the borehole samples have been digitized via photogrammetry method. The study of the point cloud related to this samples have allowed the identification and characterization of some of the fractures sets at greater depths. The permeability differences between the fault core and the damage zone can be also identified in the borehole samples. The presence of centimetric open fractures, cavities, and hydrothermal minerals, confirm the circulation of thermal fluids. Meanwhile, other samples within the fault trace are compact rocks, with slickensides and high-pressure alteration minerals.</p><p>These fracture results have been also correlated with a previous 2D magnetotelluric (MT) model which shows the Vallès fault zone as a low resistivity unit. The fault zone may give a low resistivity value only if it is permeable and water saturated. Therefore, our results identify the damage zone of the Vallès fault as the potential reservoir of La Garriga-Samalús geothermal system.</p>


2021 ◽  
Author(s):  
Leila Zeinali ◽  
Christine Ehlig-Economides ◽  
Michael Nikolaou

Abstract An Enhanced Geothermal System (EGS) uses flow through fractures in an effectively impermeable high-temperature rock formation to provide sustainable and affordable heat extraction that can be employed virtually anywhere with no need for a geothermal reservoir. The problem is that there is no commercial application of this technology. The three-well pattern introduced in this paper employs a multiple transverse fractured horizontal well (MTFHW) drilled and fractured in an effectively impermeable high-temperature formation. Two parallel horizontal wells drilled above and below or on opposing sides of the MTFHW have trajectories that intersect its created fractures. Fluid injected in the MTFHW flows through the fractures and horizontal wells, thus extracting heat from the surrounding high-temperature rock. This study aims to find the most cost-effective well and fracture spacing for this pattern to supply hot fluid to a 20-megawatt power plant. Analytical and numerical models compare heat transfer behavior for a single fracture unit in an MTFHW that is then replicated along with the horizontal well pattern(s). The Computer Modeling Group (CMG) STARS simulator is used to model the circulation of cold water injected into the center of a radial transverse hydraulic fracture and produced from two horizontal wells. Key factors to the design include formation temperature, the flow rate in fractures, the fractured radius, spacing, heat transfer, and pressure loss along the wells. The Aspen HYSYS software is used to model the geothermal power plant, and heat transfer and pressure loss in wells and fractures. The comparison between analytical and numerical models showed the simplified analytical model provides overly optimistic results and indicates the need for a numerical model. Sensitivity studies using the numerical model vary the key design factors and reveal how many fractures the plant requires. The economic performance of several scenarios was investigated to minimize well drilling and completion pattern costs. This study illustrates the viability of applying known and widely used well technologies in an enhanced geothermal system.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1635
Author(s):  
Linkai Li ◽  
Xiao Guo ◽  
Ming Zhou ◽  
Gang Xiang ◽  
Ning Zhang ◽  
...  

Hydraulic fracturing is usually employed to create a complex fracture network to enhance heat extraction in the development of an enhanced geothermal system. The heat extraction depends on the heat conduction from the rock matrix to the flowing fractures and the heat convection through a complex fracture network. Therefore, the geometries of the fracture network have important influences on the thermal breakthrough. In this paper, a hydro-thermal coupling mathematical model considering a complex fracture network is established. The embedded discrete fracture model is adopted to explicitly model the individual fracture on the mass flow and heat transfer. The model is validated by analytical solutions. Fracture network parameters are changed systematically to investigate the effects of fracture network distribution including regular and complex shape on the thermal production performance. The results show that the increase of producing pressure differential, fracture number, and conductivity will cause an early thermal breakthrough. The strong variation in fracture conductivity, as well as spacing and orientation, will cause thermal flow channeling and decrease the efficiency of heat extraction. A modified connectivity field is proposed to characterize the spatial variation of fracture network connectivity, which can be used to infer the thermal flow path.


Sign in / Sign up

Export Citation Format

Share Document