Can we use graphene as a conversion surface for a neutral particle detector?

Author(s):  
Alexander Grigoriev ◽  
Andrei Fedorov ◽  
Nicolas André

<p>An important technique of modern space plasma diagnostics is a detection and imaging of low energy (below 10 keV) energetic neutral atoms (ENA). Any space mission devoted to study of the planetary plasma environments, planetary magnetospheres and heliosphere boundaries, needs a low energy ENA imaging sensor in its payload list. A common approach to the ENA detection/imaging is to make energetic neutral atoms glance a high quality conductive surface and either produce a secondary electron, or produce a positive or negative reflection ion. In the first case we can collect and detect the yielded secondary electron and generate a start signal. The reflected neutral atom can be directed to another surface with a high secondary electron yield. Thus we can measure a time-of-flight of the reflected particle to get its velocity. In the second case we can analyze the reflected ion in an electrostatic analyzer to get the particle energy.</p><p>Many types of conversion surfaces have been investigated over last decades in order to optimize an ENA sensor properties. We investigated properties of a thin layer of graphene applied to a silicon wafer surface. The experimental setup consisted of a secondary electron detector, neutral/ions separator and a high resolution particle imager. We used an incident He beam with energy of 200 eV - 3000 eV. We obtained a secondary electron emission, particle reflection efficiency, scattering properties, and a positive ion production rate as a function of the incident beam energy and the grazing angle. The experiment results show that 1) Graphene is a good source of secondary electrons even for low energy incident particles; 2) ENA scatter from the graphene surface similar to other surface types; 3) Graphene does not convert incident ENA to positive ions, especially for high grazing angles.</p>

2019 ◽  
Author(s):  
André Galli ◽  
Peter Wurz ◽  
Jens Kleimann ◽  
Horst Fichtner ◽  
Yoshifumi Futaana ◽  
...  

1994 ◽  
Vol 01 (04) ◽  
pp. 535-538 ◽  
Author(s):  
S. TURTON ◽  
M. KADODWALA ◽  
ROBERT G. JONES

The desorption of ethene from physisorbed 1, 2-dichloroethane (DCE) and 1-bromo-2-chloroethane (BCE) on Cu(111) has been observed on irradiating the surface with electrons. The techniques used were low energy electron diffraction (LEED), Auger electron spectroscopy (AES), ultraviolet photoelectron spectroscopy (UPS), and mass spectrometric detection of the desorbed species. At 110 K physisorbed DCE and BCE underwent electron capture from low energy (<1 eV ) electrons in the secondary electron yield of the surface followed by decomposition and desorption of ethene alone. The decomposition was found to be first order in the surface coverage of the physisorbed DCE/BCE. No other molecular species desorbed from the surface, a stoichiometric amount of chemisorbed halogen was deposited and no carbon was detectable at the end of the desorption. The formation of the negative ions of these molecules by electron capture of low energy electrons in the secondary electron emission from the surface and the possible dynamics by which the negative ions undergo decomposition leaving the ethene product with sufficient energy to desorb, are discussed.


2017 ◽  
Vol 13 ◽  
pp. 21-27 ◽  
Author(s):  
V. Kvon ◽  
E. Oyarzabal ◽  
E. Zoethout ◽  
A.B. Martin-Rojo ◽  
T.W. Morgan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document