IDC events related to volcanic activity at Kamchatka Peninsula

Author(s):  
Paulina Bittner ◽  
Jane Gore ◽  
David Applbaum ◽  
Aaron Jimenez ◽  
Marcela Villarroel ◽  
...  

<p>International Monitoring System (IMS) is designed to detect and locate nuclear test explosions as part of Comprehensive Nuclear Test-Ban Treaty (CTBT) verification regime. This network can be also used for civil applications, such as the remote monitoring of volcanic activity.</p><p>Events related to volcanic eruptions, which are listed in the International Data Centre (IDC) bulletins, are typically detected by infrasound stations of the IMS network. Infrasound station IS44 and primary seismic station PS36 are situated in Kamchatka, Russian Federation, in the vicinity of several active volcanoes. These two stations recorded seismo-acoustic events generated by volcanic eruptions. In addition to atmospheric events, the IMS network has the potential of detecting underwater volcanic activity. Under favourable conditions, the hydroacoustic stations located in the Pacific Ocean and PS36 may detect underwater events close to the shore of Kamchatka Peninsula.</p><p>The aim of this presentation is to show examples of volcanic eruptions at Kamchatka Peninsula recorded by the IMS network. Supplementary information obtained by other observing networks can be found in reports issued by Kamchatkan Volcanic Eruption Response Team (KVERT) or Tokyo Volcanic Ash Advisory Center (VAAC). Such information can be compared with events listed in IDC bulletins.</p>

2003 ◽  
Vol 59 (1) ◽  
pp. 36-47 ◽  
Author(s):  
Tatiana K. Pinegina ◽  
Joanne Bourgeois ◽  
Lilia I. Bazanova ◽  
Ivan V. Melekestsev ◽  
Olga A. Braitseva

AbstractDeposits from as many as 50 large tsunamis during the last 7000 years are preserved on the Pacific coast of the Kamchatka Peninsula near the mouth of the Zhupanova River, southern Kronotskiy Bay. These deposits are dated and correlated using Holocene marker tephra layers. The combined, preserved record of tsunami deposits and of numerous marker tephras on Kamchatka offers an unprecedented opportunity to study tsunami frequency. For example, from the stratigraphy along southern Kronotskiy Bay, we estimate frequency of large tsunamis (>5 m runup). In the last 3000 years, the minimum frequency is about one large tsunami per 100 years, and the maximum about one large tsunami per 30 years; the latter frequency occurred from about 0 to 1000 A.D. This time interval corresponds to a period of increased seismicity and volcanic activity that appears to be recorded in many places on the Kamchatka Peninsula.


Author(s):  
Josef Havíř

Seismic station VRAC operated by IPE (Institute of Physics of the Earth) is part of the International Monitoring System CTBTO (Comprehensive Nuclear-Test-Ban Treaty Organization). This monitoring system is built for verifi cation of the compliance with the Comprehensive Nuclear-Test-Ban Treaty. Station VRAC provided important registration of the nuclear explosions. Last explosions were carried out on the territory Democratic People’s Republic of Korea (DPRK), latest North Korean nuclear test was conducted this year (12. 2. 2013). Station VRAC recorded signal of all North Korean nuclear explosions. Registrations by stations of International Monitoring System, including station VRAC, significantly contributed to improving of the discrimination techniques, mainly to improving the discrimination between natural earthquakes and explosions based on the analyses of Ms and mb magnitudes.


2007 ◽  
Vol 46 (1) ◽  
pp. 3-18
Author(s):  
Raúl W. Valenzuela ◽  
Javier F. Pacheco ◽  
José Pereira ◽  
Jorge A. Estrada ◽  
Jesús A. Pérez ◽  
...  

A seismic and hydroacoustic network on Socorro Island was installed jointly by the Servicio Sismolo?gico Nacional, Instituto de Geofi?sica, Universidad Nacional Auto?noma de Me?xico, and the Comprehensive Nuclear-Test-Ban Treaty Organization. The detection of ten earthquakes in June and July 2004 is reported in this study. These events occurred at epicentral distances between 209 and 9050 km and ranged in magnitude between 3.9 and 6.8. An event in the Kamchatka Peninsula featured arrivals of teleseismic high-frequency P and pP waves from a distance of 8245 km. An earthquake in the Guerrero-Oaxaca, Mexico, region shows clear seismic and T phases. Three earthquakes in the Rivera Fracture Zone were recorded, thus leading to the expectation of the continued detection of events from nearby fracture zones as well as earthquakes generated by volcanoes on Socorro and San Benedicto Islands. The analysis of the T phases from several events validates the design of the network, with three sites around the island in order to record arrivals from all directions. High frequency seismic waves generated by acoustic waves attenuate as they propagate through the rock from one end of the island to the other. Consequently small or distant events are difficult to detect at the far side of the island.


Author(s):  
V. Manville ◽  
D. Johnston ◽  
S. Stammers ◽  
B. Scott

New Zealand and the Philippines are two of the most tectonically and volcanically active regions in the world, due to their setting as large island chains on the convergent margin of the Pacific Plate. The Philippines has experienced numerous volcanic disasters over the past 400 years with the loss of over 7000 lives and considerable damage to infrastructure. The 1991 eruption of Mount Pinatubo, after 500 years of dormancy, was the largest volcanic eruption globally in the last 50 years, with serious socio-economic consequences for the Philippines. The 1995-6 eruptions of New Zealand's Mount Ruapehu, were the most serious volcanic activity experienced in the country over the last 50 years, but occurred at a frequently active volcano for which monitoring, hazard assessment, and response systems were already in place. Although the eruptions differ in size by two orders of magnitude, they illustrate how volcanic activity impacts infrastructure and society at different levels of economic development and vulnerability. Two of New Zealand's volcanic centres, Taupo and Okataina, have the potential to generate eruptions of a similar, or even greater, scale than Pinatubo. Therefore, lessons learnt from the Philippine experience will be of vital importance in planning for the mitigation of future volcanic disasters in New Zealand.


2021 ◽  
Vol 83 (2) ◽  
Author(s):  
S. Engwell ◽  
L. Mastin ◽  
A. Tupper ◽  
J. Kibler ◽  
P. Acethorp ◽  
...  

AbstractUnderstanding the location, intensity, and likely duration of volcanic hazards is key to reducing risk from volcanic eruptions. Here, we use a novel near-real-time dataset comprising Volcanic Ash Advisories (VAAs) issued over 10 years to investigate global rates and durations of explosive volcanic activity. The VAAs were collected from the nine Volcanic Ash Advisory Centres (VAACs) worldwide. Information extracted allowed analysis of the frequency and type of explosive behaviour, including analysis of key eruption source parameters (ESPs) such as volcanic cloud height and duration. The results reflect changes in the VAA reporting process, data sources, and volcanic activity through time. The data show an increase in the number of VAAs issued since 2015 that cannot be directly correlated to an increase in volcanic activity. Instead, many represent increased observations, including improved capability to detect low- to mid-level volcanic clouds (FL101–FL200, 3–6 km asl), by higher temporal, spatial, and spectral resolution satellite sensors. Comparison of ESP data extracted from the VAAs with the Mastin et al. (J Volcanol Geotherm Res 186:10–21, 2009a) database shows that traditional assumptions used in the classification of volcanoes could be much simplified for operational use. The analysis highlights the VAA data as an exceptional resource documenting global volcanic activity on timescales that complement more widely used eruption datasets.


Sign in / Sign up

Export Citation Format

Share Document