Hydrous mafic-ultramafic intrusives in a nascent arc (Massif du Sud, New Caledonia ophiolite).

Author(s):  
Arianna Secchiari ◽  
Alessandra Montanini ◽  
Dominique Cluzel ◽  
Elisa Ferrari

<p>The New Caledonia ophiolite hosts one of most complete sections of a nascent arc, representing an excellent natural laboratory for investigating the origin and the evolution of subduction systems. The sequence, originated during the onset of the Eocene subduction [1, 2], is composed of ultra-depleted forearc harzburgites [3] overlain by a dunite-dominated transition zone (500m thick), in turn overtopped by mafic-ultramafic cumulate lenses. The ultramafic rocks of the transition zone (mainly dunites and wehrlites) most likely resulted from melt-peridotite reactions involving primitive arc tholeiites and boninitic magmas [2]. By contrast, dunite-pyroxenite and gabbronorite cumulates derive from H<sub>2</sub>O-poor depleted melts transitional between boninites and arc-tholeiites [2, 4].</p><p>In this contribution, we report the first occurrence of amphibole-bearing ultramafic lithologies in the New Caledonia arc sequence. Our study deals with a petrological and geochemical characterisation of a 2.5km x 5km composite, roughly snowball-shaped, intrusive body, consisting of pyroxenite, dunite, wehrlite, hornblendite and associated mafic-ultramafic, locally sheared, dikes from the Plum area (Massif du Sud).  The pyroxenite component, which forms the core of the intrusion, consists of coarse-grained websterites, mainly composed of weakly oriented orthopyroxene (~ 30-75 vol.%) and clinopyroxene (~ 20-40 vol.%), with variable amounts of edenitic amphibole (~ 2-30 vol.%). The amphibole generally occurs as poikilitic crystals or develops as coronas on pyroxenes. Highly calcic plagioclase (An= 83-96 mol %) is scarce in the pyroxenite body (~ 2 vol. %), but more abundant in the associated dikes (~ 10-50 vol.%). Clinopyroxene shows variable Mg# (0.82-0.92) and low Al<sub>2</sub>O<sub>3 </sub>(0.99-2.00 wt%). Likewise, amphibole yields high Mg# (0.712-0.865). Estimated equilibrium temperatures based on conventional pyroxene thermometry range between 870-970°C, whereas amphibole-plagioclase pairs provide slightly lower values (800-910 °C).</p><p>Whole rocks have moderately high Mg# (71-82) and REE concentrations one to five times chondritic values. The websterites of the main body show LREE-depleted (La<sub>N</sub>/Nd<sub>N</sub> = 0.5-0.8), weakly concave downward patterns, with flat HREE segments (Lu<sub>N</sub>/Tm<sub>N</sub> = 1.1-1.3). The mafic-ultramafic dikes display similar patterns, bearing depleted to flat LREE segments (La<sub>N</sub>/Nd<sub>N</sub> = 0.6-1) and positive Eu anomalies. For all the investigated lithologies, extended trace element diagrams indicate enrichments for FME (i.e. Rb, Ba, U) and Th, coupled to Zr-Hf depletion. Strong Sr positive spikes are only observed for the crosscutting dikes, while the pyroxenite body yields Sr negative anomalies.</p><p>Geochemical modelling shows that the putative liquids in equilibrium with the websterites have intermediate Mg# (57–63) and incompatible trace element patterns sharing remarkable similarities with the New Caledonia CE-boninites [5]. However, they significantly differ from the equilibrium melts reported for the other intrusive rocks of the sequence [1, 4], suggesting greater compositional variability for the liquids ascending into the Moho transition zone and lower crust. Our results support the notion that petrological and geochemical heterogeneity of magmatic products may be distinctive features of subduction infancy.</p><p> </p><p>References</p><p>[1] Marchesi et al., Chem. Geol., 2009, 266, 171-186.</p><p>[2] Pirard et al., J. Petrol., 2013, 54, 1759–1792.</p><p>[3] Secchiari et al., Geosc. Front., 2020, 11(1), 37–55.</p><p>[4] Secchiari et al., Contrib. Mineral. Petrol., 2018, 173(8), 66.</p><p>[5] Cluzel et al., Lithos, 2016, 260, 429–442.</p>

Elements ◽  
2019 ◽  
Vol 15 (6) ◽  
pp. 387-392 ◽  
Author(s):  
D. Graham Pearson ◽  
Jon Woodhead ◽  
Philip E. Janney

Kimberlites are ultrabasic, Si-undersaturated, low Al, low Na rocks rich in CO2 and H2O. The distinctive geochemical character of kimberlite is strongly influenced by the nature of the local underlying lithospheric mantle. Despite this, incompatible trace element ratios and radiogenic isotope characteristics of kimberlites, filtered for the effects of crustal contamination and alteration, closely resemble rocks derived from the deeper, more primitive, convecting mantle. This suggests that the ultimate magma source is sub-lithospheric. Although the composition of primitive kimberlite melt remains unresolved, kimberlites are likely derived from the convecting mantle, with possible source regions ranging from just below the lithosphere, through the transition zone, to the core–mantle boundary.


2019 ◽  
Vol 157 (4) ◽  
pp. 677-689 ◽  
Author(s):  
Binsong Zheng ◽  
Chuanlong Mou ◽  
Renjie Zhou ◽  
Xiuping Wang ◽  
Zhaohui Xiao ◽  
...  

AbstractPermian–Triassic boundary (PTB) volcanic ash beds are widely distributed in South China and were proposed to have a connection with the PTB mass extinction and the assemblage of Pangea. However, their source and tectonic affinity have been highly debated. We present zircon U–Pb ages, trace-element and Hf isotopic data on three new-found PTB volcanic ash beds in the western Hubei area, South China. Laser ablation inductively coupled plasma mass spectrometry U–Pb dating of zircons yields ages of 252.2 ± 3.6 Ma, 251.6 ± 4.9 Ma and 250.4 ± 2.4 Ma for these three volcanic ash beds. Zircons of age c. 240–270 Ma zircons have negative εHf(t) values (–18.17 to –3.91) and Mesoproterozoic–Palaeoproterozoic two-stage Hf model ages (THf2) (1.33–2.23 Ga). Integrated with other PTB ash beds in South China, zircon trace-element signatures and Hf isotopes indicate that they were likely sourced from intermediate to felsic volcanic centres along the Simao–Indochina convergent continental margin. The Qinling convergent continental margin might be another possible source but needs further investigation. Our data support the model that strong convergent margin volcanism took place around South China during late Permian – Early Triassic time, especially in the Simao–Indochina active continental margin and possibly the Qinling active continental margin. These volcanisms overlap temporally with the PTB biocrisis triggered by the Siberian Large Igneous Province. In addition, our data argue that the South China Craton and the Simao–Indochina block had not been amalgamated with the main body of Pangea by late Permian – Early Triassic time.


2007 ◽  
Vol 5 (2) ◽  
pp. 229-232 ◽  
Author(s):  
Carlos Bernardo Mascarenhas Alves ◽  
Luiz Gustavo Martins da Silva ◽  
Alexandre Lima Godinho

Jaú, Zungaro jahu (Ihering, 1898), a large migratory catfish endemic to the rio da Prata basin, has a fragile conservation status and its ecology is poorly known. We radio-tracked a female jaú with a total length of 1.5 m that was passed upstream of Funil Dam, rio Grande, to describe its migratory movements, habitat use, linear home range, and diel activity. To track the fish, we made five tracking trips in the period from April, 2003 to January, 2004. In addition to the main body of Funil Reservoir, the fish also used a reservoir-river transition zone located in a branch of Funil Reservoir that flooded part of rio das Mortes. Most of the times, we found the fish in the former beds of streams flooded by the reservoir, at depths that ranged from 8-9 m in the reservoir-river transition zone to 18-21 m in Funil Reservoir. Linear home range of the fish was 31.4 km. The onset of activity occurred early in the evening, but we also detected daytime activity. The conclusion from our study was that the passed adult female jaú used reservoir habitats, migrated between the main body and the reservoir-river transition zone, preferred deep habitats, showed a relatively short home range, and had diurnal and nocturnal activities.


2020 ◽  
Author(s):  
Sergei Sobolev ◽  
Alexey Ariskin ◽  
Simone Tarquini ◽  
Ivan Pshenitsyn ◽  
Georgy Nikolaev ◽  
...  

<p>The Yoko-Dovyren ultramafic-mafic intrusion (the northern Baikal region, Russia) has excellent outcropping as well as layering falls vertically. It`s age is 728 Ma. Length of the main body is 26 km. The modal layering of its central part (~3 km thick) includes a basal reversal (from chilled rocks to plagiolherzolites) followed with Pl-bearing to adcumulate dunite, troctolite and gabbroic sequence.</p><p>Over the past 20 years, several sections of the massif have been studied in detail. (Ariskin et al 2018) have determined two major types of parental magmas recorded in the FeO vs MgO trends for the Ol cumulates through the first 500 m of the cross-section. These two geochemically similar magmas are consistent with equilibrium olivine Fo88 and Fo86 in the range of temperatures from 1290°C to ~1200°C.</p><p>We present the results of quantification of CSD of olivine from the dunite succession, which argue for two types of olivine grain populations differing for the more primitive and relatively evolved magma.</p><p>The slope of the log-linear CSD function in the lower-temperature magmas has a less steep as compared to the higher temperature ones.  Both populations can be considered to represent intratelluric olivine crystallized at a pre-emplacement stage. At a stratigraphic level of 200 m from the lower contact, in some of the samples we observed changes in the CSD patterns, which evidence a coarsening of the populations within the Dovyren chamber. Starting from 350-400 m coarsening is noticeable everywhere, so that the CSD cease to be log-linear. In addition, in a narrow zone of 500-550 m dunite are found to display a pronounced bimodal (kinked) distribution of olivine. In a larger population, olivine has highest aspect ratio (up to 3-3.5) compared to other dunite samples. The origin of such dunite can be explained by the intrusion of hot portions of magma into the colder cumulus. In this case such elongated crystals may be due to the increased growth rate of the original olivine grains. The smaller population may be due to a new nucleation event after emplacement. CSD in cumulates above the «kinked dunites» demonstrate coarsening of olivine, with the most coarse-grained populations typical of highly contaminated dunite.</p><p>Thus, a rather narrow zone is distinguished in dunite, where we can observe primary intratelluric CSD, which is not substantially altered nither by peritectic reactions in the loose cumulus of the reversal sequence, where the temperature drops rapidly, nor by coarsening during long history of temperature oscillations close to the primary magmas condition above this zone.</p><p>This work support from the Russian Science Foundation (RSF, grant No. 16-17-10129)</p><p>Ariskin Alexey, Danyushevsky Leonid, Nikolaev Georgy, Kislov Evgeny, Fiorentini Marco, McNeill Andrew, Kostitsyn Yuri, Goemann Karsten, Feig Sandrin, and Malyshev Alexey. The dovyren intrusive complex (southern siberia, russia): Insights into dynamics of an open magma chamber with implications for parental magma origin, composition, and cu-ni-pge fertility. Lithos, 302:242–262, 2018.</p>


2020 ◽  
Author(s):  
Ercan Aldanmaz ◽  
Aykut Güçtekin ◽  
Özlem Yıldız-Yüksekol

<p>The Late Triassic basaltic rocks that are dispersed as several lava sheets in a number of different tectonic slices within the Antalya nappes in SW Turkey represent the remnants of widespread oceanic magmatism with strong intra-plate geochemical signatures. The largest exposures are observed around the Antalya Bay, where pillow structured or massif lava flows are interlayered with Upper Triassic pelagic or carbonate platform sediments. Based on bulk-rock geochemical characteristics, the rocks mostly classify as alkaline basalts and display distinctive OIB-type trace element distributions characterized by significant enrichments in LILE and HFSE abundances, as well as LREE/HREE ratios, with respect to average N-MORB. Quantitative modeling of trace element data suggest that the primary melts that produced the alkaline lavas are largely the products of variable proportions of mixing between melts generated by variable, but generally low (<10) degrees of partial melting of more than one compositionally distinct mantle source. The samples, as a whole, display large variations in radiogenic isotope ratios with <sup>87</sup>Sr/<sup>86</sup>Sr = 0.703021–0.70553, <sup>143</sup>Nd/<sup>144</sup>Nd = 0.51247–0.51279, <sup>206</sup>Pb/<sup>204</sup>Pb = 18.049–20.030, <sup>207</sup>Pb/<sup>204</sup>Pb = 15.544–15.723 and <sup>208</sup>Pb/<sup>204</sup>Pb = 38.546–39.530. Such variations in isotopic ratios correlate with the change in incompatible trace element relative abundances and reflect the involvement of a number of compositionally distinct mantle end-members. These include EMI and EMII type enriched mantle components both having lower <sup>143</sup>Nd/<sup>144</sup>Nd than typical depleted MORB source with their contrasting low and high <sup>206</sup>Pb/<sup>204</sup>Pb and <sup>20</sup><sup>7</sup>Pb/<sup>204</sup>Pb ratios respectively, as well as a high time-integrated <sup>238</sup>U/<sup>204</sup>Pb component with high <sup>206</sup>Pb/<sup>204</sup>Pb at relatively low <sup>87</sup>Sr/<sup>86</sup>Sr and εNd values. The results from trace element and radiogenic isotope data are consistent with the view that the initial melt generation was likely related to partial melting of the shallow convecting upper mantle in response to Triassic rifting events, while continued mantle upwelling resulted in progressively increased melting of mantle lithosphere that contained compositionally contrasting lithological domains with strong isotopic heterogeneities.</p>


2005 ◽  
Vol 42 (9) ◽  
pp. 1571-1587 ◽  
Author(s):  
Michael J Dorais ◽  
Matthew Harper ◽  
Susan Larson ◽  
Hendro Nugroho ◽  
Paul Richardson ◽  
...  

New England and Maritime Canada host two major suites of Mesozoic diabase dykes. The oldest is the Coastal New England dykes that were emplaced between 225 and 230 Ma. These rocks are dominantly alkaline with trace element and isotopic compositions indicative of a high-238U/204Pb mantle (HIMU) source. The oldest of the ~200 Ma Mesozoic rift magmas is represented by the Talcott basalt of the Hartford basin and its feeder dykes. External to the basin is the compositionally equivalent Higganum dyke. The extension of the Higganum, the Onway dyke in New Hampshire, is identical in major and trace element and isotopic compositions indicating that the dyke system represented a feeder to flows of flood basalt proportions. The Talcott system rocks have some trace element similarities with arc basalts and have been interpreted as representing melts of a subduction zone modified mantle beneath the Laurentian- Gondwanan suture. Incompatible trace element ratios and Ba, Th, and U values are, however, unlike arc basalts and are more indicative of crustal contamination of the primary magma. The coastal New England magmas have oceanic island basalt signatures that are generally thought to represent plume-tail magmatism, which is antithetic to a plume-head origin for the younger eastern North America magmas. However, coastal New England rocks have the same trace element signatures as the alkaline rocks of the Loihi seamount, which represent the pre-shield stage to the voluminous tholeiitic magmatism in Hawaii.


2016 ◽  
Vol 154 (1) ◽  
pp. 68-86 ◽  
Author(s):  
PRANJIT HAZARIKA ◽  
DEWASHISH UPADHYAY ◽  
KAMAL LOCHAN PRUSETH

AbstractMica pegmatites from the Bihar Mica Belt contain three distinct generations of tourmaline. The major-element composition, substitution vectors and trajectories within each group are different, which indicates that the three types of tourmalines are not a part of one evolutionary series. Rather, the differences in their chemistries as well their mutual microtextural relations, can be best explained by growth of tourmaline from pegmatitic melts followed by episodic re-equilibration during discrete geological events. The euhedral, coarse-grained brown type I tourmaline cores have relatively high Ca, Mg (XMgc. 0.37) and Al with correlated variation in Sr, Sc, Ti, Zr, Y, Cr, Pb and Rare Earth elements (REEs). They are inferred to have crystallized from pegmatitic melts. Monazites included within these tourmalines give chemical ages of 1290−1242 Ma interpreted to date the crystallization of the pegmatitic tourmaline. The bluish type II and greyish type III tourmalines with low Ca and Mg contents (XMg = 0.16−0.27) and high Zn, Sn, Nb, Ta and Na, formed by pseudomorphic partial replacement of the pegmatitic tourmaline via fluid-mediated coupled dissolution–reprecipitation, are ascribed to a hydrothermal origin. The ages obtained from monazites included in these tourmalines indicate two alteration events at c. 1100 Ma and c. 950 Ma. The correlated variation of Ca, Mg and Fe and the trace elements Sr, Sn, Sc, Zn and REE within the tourmalines indicates that the trace-element concentrations of tourmaline are controlled not only by the fluid chemistry but also by coupled substitutions with major-element ions.


2012 ◽  
Vol 78 (2) ◽  
pp. 341-352 ◽  
Author(s):  
Nathan D. Webb ◽  
David A. Grimley ◽  
Andrew C. Phillips ◽  
Bruce W. Fouke

AbstractThe origin of Illinois Episode (OIS 6) glacial ridges (formerly: ‘Ridged Drift’) in the Kaskaskia Basin of southwestern Illinois is controversial despite a century of research. Two studied ridges, containing mostly fluvial sand (OSL ages: ~ 150 ± 19 ka), with associated debris flows and high-angle reverse faults, are interpreted as ice-walled channels. A third studied ridge, containing mostly fine-grained till, is arcuate and morainal. The spatial arrangement of various ridge types can be explained by a glacial sublobe in the Kaskaskia Basin, with mainly fine-grained ridges along the sublobe margins and coarse-grained glaciofluvial ridges in a paleodrainage network within the sublobe interior. Illinois Episode till fabric and striation data demonstrate southwesterly ice flow that may diverge near the sublobe terminus. The sublobe likely formed as glacial ice thinned and receded from its maximum extent. The Kaskaskia Basin contains some of the best-preserved Illinois Episode constructional glacial landforms in the North American midcontinent. Such distinctive features probably result from ice flow and sedimentation into this former lowland, in addition to minimal postglacial erosion. Other similar OIS 6 glacial landforms may exist in association with previously unrecognized sublobes in the midcontinent, where paleo-lowlands might also have focused glacial sedimentation.


Sign in / Sign up

Export Citation Format

Share Document